B.L.D.E.A's V.P.Dr.P.G.HALAKATTI COLLEGE OF ENGINERING AND TECHNOLOGY VIJYAPUR 586103

QUESTION PAPERS INDEX JUN/JUL 2023

M.TECH

S.N.	SUB CODE	SUBJECT CODE	Page No.
		CSE	
1	18CSE11	Computational Structural Mechanics	03
2	18CSE14	Structural Dynamics	06
3	20CSE14	Mechanics of Deformable Bodies	09
4	20CSE12	Matrix Methods of Structural Analysis	11
5	20CSE13	Applied Environmental Chemistry and	14
		Microbiology	
6	22CSE15	Structural Dynamics	18
7	20CSE21	Advanced designed of Steel Structure	22
8	20CSE22	Advance Wastewater Treatment Technology	25
9	22CSE21	Industrial Wastewater Treatment	27
10	22CSE231	Environmental Geo Technology	29
11	22CSE233	Earthquake Resistant Structures	30
12	22CSE241	Waste Resource Engineering and Applied	32
		Hydraulics	
13	22CSE242	Design of High Rise Structures	34
14	20CSE322	Optimization Techniques	36
		MMD	
15	20MMD11	Mathematical Method in Engineering	38
16	20MMD12	Design of Vibration Control Systems	41
17	20MMD13	Continuum Mechanics	43
18	20MMD15	Dynamics of Mechanism Design	45
19	20MMD21	Advanced Finite Elements Analysis	47
20	20MMD22	Advanced Machine Design	49
21	20MMD251	Automobile System Design	51
22	20MMD21	Advance Machine Design	53
23	20MMD22	Advance Finite Elements Methods and	55
		Applications	
24	20MMD232	Fracture Mechanics	57

25	20MMD241	Mechatronics System Design	59
		SCS	
26	22SCS21	Big Data Analysis	60
27	22SCS22	Artificial Intelligence and Machine Learning	61
28	22SCS231	Wireless Networks and Mobile Computing	63
29	22SCS244	Agile Technologies	65
		LDN	
30	22LDS12	Advance Digital Processing	66
31	22LDN21	Advance Communication Systems	68
32	22LDN22	Antenna Theory and Design	69
33	22LDN231	Wireless Sensor Networks	71
34	22LDN241	Multimedia Over Communication Links	72

USN

18CSE11

First Semester M.Tech. Degree Examination, June/July 2023 **Computational Structural Mechanics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Explain the types of framed structures. 1

(10 Marks)

Solve the following equation by Gauss-Seidal method.

$$4x_1 + x_2 - 0.75x_3 = -8000$$

 $x_1 + 4x_2 - 0.75x_3 = 4000$

$$x_1 + x_2 - x_3 = 0$$

(10 Marks)

OR

Solve the following set of simultaneous equations by Gauss elimination method.

$$2x_1 - x_2 + x_3 = 7$$
; $x_1 + 2x_2 + x_3 = 0$; $3x_1 + x_2 - 2x_3 = -2$.

(10 Marks)

b. Explain briefly the following:

Principal of superposition

Equivalent joint load. ii)

(10 Marks)

Module-2

Prove that the product of element flexibility and stiffness matrix is an identity matrix. 3

(10 Marks)

Using the transformation approach, develop the global flexibility matrix for the portal frame with respect to the system coordinates shown in Fig.Q.3(b).

Fig.Q.3(b)

(10 Marks)

OR

Develop the stiffness matrix for the continuous beam with respect to the coordinates shown in Fig.Q.4(a). EI = constant. Use transformation approach.

Fig.Q.4(a)

(10 Marks)

b. Derive the flexibility matrix for the pin joined frame shown in Fig.Q.4(b). Assume rigidity is same for both members.

(10 Marks)

Module-3

Analyse the continuous beam shown in Fig.Q.5 by the matrix flexibility method and draw the BMD. Adopt transformation approach.

(20 Marks)

OR

In a pin jointed frame shown in Fig.Q.6, the member AC found to have lack of fit by 1.5mm. Determine the forces in all members when AC is forced into position. The cross sectional area of diagonal members is 1000mm^2 and 200mm^2 for remaining members. Take $E = 2 \times 10^5 \text{ N/mm}^2$.

(20 Marks)

Module-4

Analyze the frame shown in Fig.Q.7 by the matrix stiffness method. Adopt transformation approach.

(20 Marks)

OR

A pin jointed frame consists of four members connected as shown in Fig.Q.8. Compute the forces in members using matrix stiffness method. Adopt transformation approach. Take $E = 2 \times 10^5 \text{N/mm}^2$ for all members. $A = 1000 \text{mm}^2$ for all members.

(20 Marks)

Module-5

9 Analyze the continuous beam shown in Fig.Q.9 by direct stiffness method. Draw BMD.

(20 Marks)

OR

Analyze the pin jointed frame shown in Fig.Q.10 by direct stiffness method.

Area $A_1 = 1000 \text{mm}^2$

Area $A_2 = 750 \text{mm}^2$

Area $A_3 = 500 \text{mm}^2$

(20 Marks)

			18CSE14
USN			

First Semester M.Tech. Degree Examination, June/July 2023 Structural Dynamics

Time: 3 hrs.

Max. Marks: 100

Note: 1.Answer any FIVE full questions, choosing ONE full question from each module.
2.Missing data, if any, to be suitably assumed.

Module-1

1 a. State and explain D'Alembert's principle.

(04 Marks)

b. Difference between static loading and dynamic loading.

(08 Marks)

c. Determine the natural frequencies of the 200 kg block as shown in Fig.Q1(c).

OR

a. Obtain the differential equation for a damped free vibration of an elastic SDOF system and hence obtain the expression for critically damped system only. (10 Marks)

b. Determine the natural frequency, natural cyclic frequency, period of oscillation for the spring mass system with the mass 30 kg and stiffness is 0.8 kN/m. It is the system given in initial displacement of 50mm with a initial velocity 0.75 m/s. Determine the displacement, velocity and acceleration after 0.3 sec. (10 Marks)

Module-2

 Derive an expression for dynamic amplitude of undamped forced vibration of single degree freedom system subjected to harmonic loading. (10 Marks)

- b. An electric motor is supported on a spring and dashpot. The stiffness is 6000 N/m and dashpot offers resistance of 600 N at 3.5 m/s. Unbalanced mass of 1 kg rotates at 40mm radius and total mass of vibration system is 25 kg and motor runs at 375 rpm. Determine
 - i) Damping factor ii) Amplitude of vibration iii) Resonant speed and resonant amplitude.
 (10 Marks)

OR

- 4 a. Explain the working principle of Seismometer and accelerometer. (10 Marks)
 - b. An automobile whose weight is 200N is mounted on 4 identical springs. Due to its weight it sags 200mm and each shock absorber has a damping co-efficient of 0.5 N for a velocity of 20 mm/sec. The car is placed on a platform which moves vertically at a resonant speed having amplitude 15mm. Find the amplitude of the vibration of the car. (10 Marks)

Module-3

5 Determine the natural frequency and mode shapes for the structure shown in Fig.Q5.

(20 Marks)

OR

Determine the natural frequency and modes of vibration for the system shown in Fig.Q6. Given: $m_1 = 10000 \text{ kg}$, $m_2 = 5000 \text{ kg}$

$$K_1 = 2 \times 10^6 \text{ N/m}$$
, $K_2 = 1 \times 10^6 \text{ N/m}$

(20 Marks)

Module-4

Determine natural frequency and modes of vibration for the system shown in Fig.Q7. Also determine the steady state response.

Given: $m_1 = 4900 \text{ kN}$, $m_2 = 3924 \text{ kN}$

 $K_1 = K_2 = 100 \text{ kN/mm}$, $K_3 = 200 \text{ kN/mm}$

 $F_1(t) = 10,000 \sin 30t \, kN, F_2(t) = 0$

(20 Marks)

OR

8 Compute the response due to harmonic loading for the shear building shown in Fig. Q8.

Given: $K_1 = 2.5 \times 10^6 \text{ N/m}$, $K_2 = 5 \times 10^6 \text{ N/m}$

$$m_1 = 25000 \text{ kg}$$
 , $m_2 = 15000 \text{ kg}$

 $F_1(t) = (50000 \sin 20t)N$, $F_2(t) = 0$

Fig.Q8

(20 Marks)

Module-5

Explain normal mode approach for damping uncoupling?

(10 Marks)

Write a note on : (i) Rayleigh's method

(ii) Dunkerley's method.

(10 Marks)

OR

Derive differential equation of motion for free vibration of a bar, considering the bar as a 10 (20 Marks) continuous beam.

			1.55					
F T ~ 1 1	100				1 1		1	100
CA	1 1			T .	f		1	
7.1	1				K .	10	10	41
001		1	74	1			100	
	123							10.0
	91 34			4				
	Chemical Problem		5.0		1	1	100	100
	LL							- H

20CSE14

First Semester M. Tech. Degree Examination, June/July 2023 **Mechanics of Deformable Bodies**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Assume suitable data if missing wherever necessary.

Module-1

- Derive Cauchy's stress relations for the resultant normal and shear stresses on an arbitrary 1 (10 Marks)
 - b. Derive the differential equations of equilibrium in 3D problem Cartesian coordinate.

(10 Marks)

OR

List the assumptions made in the linear elasticity.

- b. The state of stress at a point is characterized by the components $\sigma_x = 100 \text{MPa}$. $\sigma_y = -40 \text{MPa}$, $\sigma_z = 80 \text{MPa}$, $\tau_{xy} = \tau_{yz} = \tau_{zx} = 0$. Find the octahedral stresses at this point (05 Marks)
- Derive the equilibrium equations in polar coordinate.

(10 Marks)

Module-2

Explain: i) Principle stress and principal strain ii) Hydrastatic and deviatoric stress. 3

(08 Marks)

The state of stress at a point is given by the following array of terms

$$\begin{bmatrix} 9 & 6 & 3 \\ 6 & 5 & 2 \\ 3 & 2 & 4 \end{bmatrix} MPa$$

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as majpractice.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be

Determine the principal stresses and principal directions.

(12 Marks)

Derive the expression for octahedral normal and octahedral shear stresses.

The strain components at a point are given by $\varepsilon_x = 0.01$, $\varepsilon_y = -0.02$, $\varepsilon_z = 0.03$, $\gamma_{xy} = 0.015$, $\gamma_{yz} = 0.02$, $\gamma_{xz} = -0.01$. Determine the normal and shearing strains on the octahedral plane. (12 Marks)

Module-3

Derive expression for σ_r and σ_θ for a thick cylinder subjected to external pressure 'P₀' and internal pressure 'P1'. If 'a' and 'b' are internal and external radii respectively. Show the variation of σ_{θ} and σ_{r} for a thick cylinder subjected to internal pressure only P_{θ} ' = 0.

b. Prove that the following are Airy's stress function and examine the stress distribution represented by it i) $\phi = A[x^4 - 3x^2y^2]$

(04 Marks)

(10 Marks)

OR

Given the stress function $\phi = -\left[\frac{F}{h^3}\right] xy^2$ (3h - 2y). Determine the stress components and sketch their variation in a region included in y = 0, y = h, x = 0, on the side 'x' in positive.

b. Derive compatibility equation in terms of plane stresses or derive

$$\left[\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right] \left[\sigma_{x} + \sigma_{y}\right] = -(1 + \mu) \left[\frac{\partial Fx}{\partial x} + \frac{\partial Fy}{\partial y}\right]$$

(10 Marks)

Module-4

7 a. Derive an expression for torsion of a circular cross -section.

(10 Marks)

b. A two cell tubular section shown below is formed by conventional air foil shape having an interior web twisting moment 10,000N-m. Determine the shear for distribution and shear stress area of cell 1 = 680cm² and area of cell 2 = 2000cm².

(10 Marks)

OR

8 a. Explain the membrane analogy applied to a narrow rectangular section.

(06 Marks)

b. Derive the differential equation $\nabla^2 \phi = -2G\theta$ for torsional problem.

(14 Marks)

Module-5

- 9 a. Sketch the ideal stress strain diagrams for
 - i) Elastic strain hardening
 - ii) Rigid strain hardening
 - iii) Elastic perfectly plastic
 - iv) Rigid perfectly plastic
 - v) Elastic linear strain hardening and explain the same.

(10 Marks)

b. Explain the theories of failures.

(10 Marks)

OR.

10 a. Write a note on Tresca's and Von-Mises yield criteria.

(10 Marks)

- b. A steel bolt is subjected to torsional moment of 0.12 kN-m and bending moment of 0.2 KN/m. If the yield stress of the materials in tension is 250N/mm². Determine the diameter of the bolt according to
 - i) Tresca yield criteria
 - ii) Von-mises yield criteria.

(10 Marks)

22-Isem. M.Tech. Cy

CBCS SCHEME

		1000	-			
ISN		 1			- 1	
0514	B 8			1	- 1	
		 			- 1	- 1

22CSE/USE12

First Semester M.Tech. Degree Examination, June/July 2023 Matrix Methods of Structural Analysis

Time: 3 hrs.

Max. Marks: 100

Q.1	0	Explain briefly	M	L	C
Q.1	a.	(i) Static and kinematic indeterminacy. (ii) Linear and Non-linear structures.	10	_	CO
	b.	Solve the following equations by using Gauss-Elimination method: x - y + z = 4; $x - 4y + 2z = 8$; $x + 2y + 8z = 12$	10	L3	CO
Q.2	a.	Solve the following system of equations by Co. 2.11			
-		Solve the following system of equations by Gauss-Seidel method, to obtain the final solution. Correct to three place of decimals. $x + y + 54z = 110$; $27x + 6y - z = 85$; $6x + 15y + 2z = 72$	10	L3	CO
	b.	Solve the given linear simultaneous equation by Choloslay moths.	10	L3	COI
		3x + 2y - z = 4; $2x + 4y + 2z = 8$; $-x + 2y + 4z = 5$	10	13	CO
Q.3		Module – 2			
Ų.S	a.	Show the relationship between local and global coordinates and flexibility and stiffness matrix.	12	L2	CO1
	b.	Find the flexibility matrix of the Cantilever beam shown in Fig. Q3 (b).	8	L3	CO1
		Fig. Q3 (b)			
1		OR OR			
2.4	a.	1 1, £1, AE (3). 1 1, £1, AE (3).	10	L3	CO1
	b.	Develop the stiffness matrix of the beam shown in Fig. Q4 (b) with respect to			
	1	the four degree of freedom given.	10	L3	CO1
		Fig. Q4 (b)			

12

AACOT	/USE12
771	/
44.	/

	Module – 5			
Q.9	Analyze the beam by direct stiffness method shown in Fig. Q9. Draw BMD and	20	L4	CO
4.5	SFD.			
	45 KN 15 KN/m			
	R			
	Af & mmm c			
	2m y 4m fat hm (21) m			
	(1·5I)			
	Fig. Q9			
	116.			
	OR		/c	7.00
0.10	Analyze the frame using direct stiffness method shown in Fig. Q10. Draw	20 L4 (CC	
Q.10	BMD and SFD.			
	c 15 krifm			
	Smmme			
	5m ①			
	2m 2m			
	20 KN - + (2E) 4 - 20 KN			
	2m 2m			
	A min mus D			
	Fig. Q10			
		-		-

	As the state of th			
	3 of 3			
	3 of 3			
	3 of 3			
	3 of 3			
	3 of 3			

		No.
LISN		1
USIN	100	

22CEE13

First Semester M.Tech. Degree Examination, June/July 2023 Applied Environmental Chemistry and Microbiology

Time: 3 hrs.

Max. Marks: 100

Q.1	T	Module – 1	M	L	C
Q.1	a.	Explain the significance of environmental chemistry in the field of environmental engineering.	10	L2	CO
	b.	Explain the factors affecting the rate of reactions.	10	L2	CO
		OR			
Q.2	a.	The half life of atrazine (a herbicide) is estimated to be approximately 14			
		days. What fractions of the initial atrazine will remain after 100 days?	10	L1	CO
	b.	Derive the equations for zero order reaction half-life period.	10	L4	CO
		Module – 2			
Q.3	a.	Discuss the classification of colloidal systems with suitable example.	10		
	b.	E Li I au	10	L2	CO
			10	L2	CO
2.4	Γ.	OR			
Q.4	a.	Write a note on adsorption isotherms.	10	L1	CO2
	b.	Differentiate between hydrophobic and hydrophilic colloids.	10	L1	CO2
		Module – 3			
Q.5	a.	Justify the statement with the help of equation when	10		
		absorbing medium increases. exponentially as the concentration of	10	L2	CO3
	b.	With the aid of neat schematic diagram explain the concepts of spectro photometer.	10	L2	CO3
		OR			
2.6	a.	Discuss briefly how iron and manganese get into underground water supplies.	10	L2	CO3
	b.	Discuss the behavior of organics in the environment and in engineered	10	1.0	000
		systems.	10	L2	CO ₃

22	-	V.	×
ZZ		28	w

		Maria de la companya della companya			
Q.7	а	Fynlain the determination of COD in the last			
Q.,	a.	Explain the determination of COD in the laboratory.	10	L2	(
	b.	Calculate 1-day 37°C BOD of sewage sample whose 5 day 20°C BOD is	10	L3	
		100mg/L. Assume Kd at 20°C as 0.1.	10	L3	1
					ĺ
0.0		OR OR			1
Q.8	a.	Explain the significance of fluoride levels in water supplies.	10	L2	1
	b.	The town of municipal corporation discharges 17260-3/1.	10		
		waste water into the river. The treated waste water has a BOD ₅ of 12 mg/L	10	L3	•
		and a BOD decay constant (K) of 0.12 day at 20°C. The river has a flow of			
		0.43 m ⁻ /second and an ultimate BOD (Lo) of 5 0mg/L. The DO of the river			
		is 0.3 mg/L and DO of the waste water is 1.0 mg/L. Compute the DO and			
		initial dictillate BOD (Lo) after mixing.			
	b. Calculate 1-day 37°C BOD of sewage sample w 100mg/L. Assume Kd at 20°C as 0.1. OR a. Explain the significance of fluoride levels in water waste water into the river. The treated waste water and a BOD decay constant (K) of 0.12/day at 20° 0.43 m³/second and an ultimate BOD (Lo) of 5.0 m is 6.5mg/L and DO of the waste water is 1.0mg initial ultimate BOD (Lo) after mixing. Module – 5 a. Explain the importance of micro organisms in the b. Discuss the importance of algae in environment and bacteria. b. Define virology and explain its types.	Module – 5	-		
Q.9	a.	Explain the importance of micro organisms in the environment.	10	L2	(
-	L				
	D.	Discuss the importance of algae in environment and its classification.	10	L2	(
		OR			
Q.10	a.	With the aid of diagram, explain the significance of growth phases of	10	L2	(
Q.10		bacteria.	10		`
	h	Definition			
	υ.	Define virology and explain its types.	10	L1	(
		****	-		
		23 A			
		03 03			
	1				
	W. Y				
	- 19/				
	**/				

	Y				

	¥				
	**				

Q.9 Q.10					
	***	2.252			
	***	2 of 2			
		2 of 2			

GBGS SCHEME

USN						
				1		

22CSE/USE14

First Semester M.Tech. Degree Examination, June/July 2023 Mechanics of Deformable Bodies

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. Any missing data may be suitably assumed.

		The state of the s	2000		
		Module – 1	M	L	C
Q.1	a.	Derive the differential equations of equilibrium in the case of three dimensional problems in Cartesian co-ordinate system.	10	L2	CO1
	b.	At a point 'P' in a body, $\sigma_x = 100 \text{N/mm}^2$, $\sigma_y = -50 \text{N/mm}^2$ and $\sigma_z = -50 \text{N/mm}^2$, $\tau_{xy} = \tau_{yz} = \tau_{zx} = 100 \text{N/mm}^2$. Determine the normal, shearing and resultant stresses on a plane, i.e., equally inclined to all the three axes.	10	L3	C01
		OR			
Q.2	a.	Obtain the compatibility equation for plane stress problems in Cartesian form.	10	L2	CO1
	b.	The state of stress at a point in a body are given by $\sigma_x = 6x^2yz$, $\sigma_y = 5xyz^3$, $\sigma_z = 2(x^3 + y^3 - 2yz)$ and $\tau_{xy} = -3xy^2z$, $\tau_{yz} = 1/4$ [$(6y^2 - 5xz^2)$ $z^2 + 8(x^2 + y^2)$], $\tau_{zx} = -3xyz^2$. Does this satisfy the equations of equilibrium in the absence of forces (Body forces)?	10	L3	COI
		Module – 2			
Q.3	a.	Explain strain invariants.	6	L2	CO2
	b.	The state of stress at a point is given by the following stress tensor, $\tau_{ij} = \begin{bmatrix} 50 & 50 & -40 \\ 50 & -30 & 30 \\ -40 & 30 & -100 \end{bmatrix}$. Calculate stress invariants, principal stresses and principal directions, spherical and deviator stress tensor.	14	L3	CO2
	43	OR OR			
Q.4	a.	Show that of the nine rectangular stress components the cross-shears are equal.	8	L2	CO2
	b.	The state of stress at a point with respect to x, y, z, system is given by $\begin{bmatrix} 4 & 1 & 2 \\ 1 & 6 & 0 \\ 2 & 0 & 8 \end{bmatrix}$ MPa. Show that by stress transformation of the axes by 45° about the Z-axis (anti clockwise direction), the stress invariants remains unchanged.	12	L3	CO2
		1 of 2			

			220	CSE/	US
		Module – 3			-
Q.5	a.	Investigate whether $-\frac{P}{\pi}r\theta \sin\theta$ is a stress function.	8	L3	CO
	b.	A thick cylinder of inner radius 10cm and outer radius 15cm is subjected to an internal pressure of 12MPa. Determine the radial and hoop stresses in the cylinder at inner and outer surface.	12	L3	СО
0 (OR			1
Q.6		Discuss the effect of a circular hole on the stress distribution on a rectangular plate subjected to tensile stress in X-direction and hence evaluate the stress concentration factor.	20	L3	CO
		Module – 4	1		1
Q.7	a.	Explain the membrane analogy, applied to a narrow rectangular section.	8	L2	CO ₄
	b.	Derive the differential equation $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -2G\theta$ for a torsion problem in elasticity. When $\phi(x, y)$ is constant, along the boundary of the cross-section.	12	L3	CO4
		OR			
Q.8		Given the stress function $\phi = \left[\frac{H}{\pi}\right] Z \tan^{-1}\left(\frac{x}{z}\right)$. Determine whether stress function ' ϕ ' is admissible. If so, determine the stresses.	20	L3	CO4
		Module – 5			
Q.9	a.	Explain the different theories of failure and mention its significance.	12	L2	CO5
	b.	A cylindrical bar of cast iron is subjected to BM of 2kN-m and TM of 4kN-m. Assuming that yield limit of cast iron $\sigma_y = 210 \text{N/mm}^2$, $E = 105 \text{kN/mm}^2$, $\mu = 0.25$. Determine the diameter of the bar based on the factor of safety 3. Using: i) Maximum principal stress theory ii) Maximum principal strain theory.	8	L3	CO5
		OR			
2.10	a.	Discuss the following:	8	L2	CO5
		Factors affecting plastic deformation. Strain Hardening.	J	L.	CO3
		The state of stress at a point is given by $\sigma_x = 70 \text{MPa}$, $\sigma_y = 120 \text{MPa}$ and $\tau_{xy} = 35 \text{MPa}$. If the yield strength for the material is 125 MPa. Determine in a uniaxial tensile test, whether yielding will occur according to Trecca's and Van-misses yield conditions or not.	12	L3	CO5

USN						
CDI			3			

22CSE/USE15

First Semester M.Tech. Degree Examination, June/July 2023 Structural Dynamics

Time: 3 hrs. Max. Marks: 100

		Module – 1	M	L	C
Q.1	a.	Derive the differential equation of motion for the free vibration of a spring mass system. Obtain the solution of the differential equation. Sketch the motion of the system.	10	L2	C01
	b.	Consider the system as shown in Fig. Q1 (b). If $K_1 = 2000$ N/m, $K_2 = 1500$ N/m, $K_3 = 3000$ N/m and $K_4 = K_5 = 500$ N/m, find the mass if the system has a natural frequency of 10 Hz.	10	L3	CO1
		OR			
Q.2	a.	Derive the equation of motion for the free vibration response of a spacing mass damper system. Explain (i) Underdamped system (ii) Overdamped system (iii) Critically damped system.	10	L2	COI
	b.	Explain Coulomb Damping and derive the equation of motion and solution to the equation of motion.	10	L4	CO
		Module – 2			
Q.3	a.	A spring mass dashpot system is subjected to harmonic loading of $F_0 \sin \omega_n^+$. Derive the expression for displacement transmissibility.	10	L3	CO
-	b.	Explain Half-power Bandwidth method.	10	L1	CO
	1	OR '			
Q.4	a,	Derive the expression for Duhamel's integral for the response of single degree of freedom system subjected to excitation.	10	L4	CO
	b.	1 1 1 CC C C C C C C C C C C C C C C C	10	L1	CO
		Module – 3		T-2	
Q.5	a.	Explain the concept of shear building with a neat sketch.	10	L1	CO
	b.	Determine the natural frequencies and mode shape of the given system as shown in Fig. Q5 (b).	10	L4	CO ₄
		Fig. Q5 (b)			
	-1	1 of 2	-		

		OR			1
Q.6	a.	Derive the expression for orthogonality of			-
	b.	- The state of the gonality of normal modes	12	2 L1	CO
			8	L1	CO
Q.7	9	Module – 4			
Q./	a.	Determine the natural frequencies and mode shape for the structure as shown in Fig.Q7 (a). $m_2 = 660 \text{ kg}$ $m_1 = 1360 \text{ kg}$ $m_1 = 1360 \text{ kg}$ $m_2 = 5 \times 10^5 \text{ mm}$	s 20) L4	СО
Q.8	a.	Fig. Q7 (a) Determine the natural frequencies and the mode shapes for the shear building as shown in Fig. Q2	120		
		building as shown in Fig. Q8. $m = 1$ $k_1 = 600 \text{ kN/m}$ $k_2 = 1200 \text{ kN/m}$ $k_3 = 1200 \text{ kN/m}$	20	L4	CO ₄
		Fig. Q8			
9.9	a.	Explain Dunkarley's method.			
.,		Derive differential equation of motion for free flexural vibration of beam	10	L1	CO ₅
	h	Delive uniceential equation of motion for free flavored without in the	10		
	b.	considering beam to be simply supported.	10	L4	CO5
10		OR	10	L4	CO5
	a.]	considering beam to be simply supported.	10	L4	CO5

					2000	
USN						

22CSE/USE15

First Semester M.Tech. Degree Examination, June/July 2023 Structural Dynamics

Time: 3 hrs.

Max. Marks: 100

		Module – 1	M	L	C
Q.1	a.	Derive the differential equation of motion for the free vibration of a spring mass system. Obtain the solution of the differential equation. Sketch the motion of the system.	10	L2	CO1
	b.	Consider the system as shown in Fig. Q1 (b). If $K_1 = 2000$ N/m, $K_2 = 1500$ N/m, $K_3 = 3000$ N/m and $K_4 = K_5 = 500$ N/m, find the mass if the system has a natural frequency of 10 Hz. Fig. Q1 (b)	10	L3	CO1
	1	OR			
Q.2	a.	Derive the equation of motion for the free vibration response of a spacing mass damper system. Explain (i) Underdamped system (ii) Overdamped system (iii) Critically damped system.	10	L2	COI
	b.	Explain Coulomb Damping and derive the equation of motion and solution to the equation of motion.	10	L4	CO2
		Module – 2			
Q.3	a.	A spring mass dashpot system is subjected to harmonic loading of $F_0 \sin \omega_n^+$. Derive the expression for displacement transmissibility.	10	L3	CO
	b.	Explain Half-power Bandwidth method.	10	L1	CO
	1	OR '			
Q.4	a.	Derive the expression for Duhamel's integral for the response of single degree of freedom system subjected to excitation.	10	L4	CO
	b.	Define vibration isolation. What are the different types of vibration isolation, explain any one.	10	L1	CO
		Module – 3			
Q.5	a.	Explain the concept of shear building with a neat sketch.	10	L1	CO
	b.	Determine the natural frequencies and mode shape of the given system as shown in Fig. Q5 (b).	10	L4	CO
		Fig. Q5 (b)			
		1 of 2			

22CSE/USE15

		OR			<u> </u>
Q.6	a.		1		
	b.	Explain mode shape and natural frequency.	12	-	
		Module – 4	8	L	CO
Q.7	a.		8 20) L2	CO ₄
		M2=660kg - 72			
			7		
		2.5m 2.I			
		m ₁ = 1360 Kg → 2,		-	
		3.0m I = Sx10 S mm		ŀ	
		min Plant			
		Fig. Q7 (a)			
~ ~	Т	OR		-	
Q.8	a.	Determine the natural frequencies and the mode shapes for the shear building as shown in Fig. Q8. $m = 1$	20	L4	CO4
		m=1.5 k,=600 kn/m			
		V = 1200 KN/m			
		ma2 >23			
		K3= 1200 KN/m			-
		Fig. Q8			
		Module - 5			
.9	a.	Explain Dunkarley's method.	10	T 1	00.
	b.	Derive differential equation of motion for free flexural vibration of beam considering beam to be simply supported.	10 10	L1 L4	CO5
		OR		ene-2	
.10	a.	Explain Stodola's method.	40		
	b.	Explain Rayleigh's method.	10	L1	CO4
	7806	T Inched.	10	L1	CO ₅

p^d

28-IIsem. M. Tech. CV

CBCS SCHEME

TON	1	1	- 1			
JSN			- 1	1	1 3	
	1	10 0		- 1	1 3	

22CSE21

Second Semester M.Tech. Degree Examination, June/July 2023 **Advanced Design of Steel Structures**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. Use of IS - 800-2007, IS-801-2010, IS-811-1987, BS 5950. Part-8 and steel table permitted.

4. Assume suitable data if any.

Q.1	a.	Fynlain the different factor (C)	N	L	C
Q.1	a.	Explain the different factors affecting lateral stability.	10		
	b.	Determine the position of shear centre for a channel section shown in	+-		
		Fig. Q1 (b).	1 10) L2	CO
		120mm			
		I I I I I I I I I I I I I I I I I I I			
		120mm			
		Tionm		1	
		X Y X X X X X X X X X X X X X X X X X X		-	
		lo _{min}			
		Fig. Q1 (b)			
		OR			
Q.2	a.	Design a laterally unrestrained hours to the second			
		Design a laterally unrestrained beam to carry uniformly distributed load of 50 kN/m. The beam is unsupported for the load of	20	L3	CO
		50 kN/m. The beam is unsupported for a length of 1.5 m and is simply supported on longitudinal beams at its and the supported on longitudinal beams at its analysis.			
		supported on longitudinal beams at its ends. Apply all necessary checks.			
		Module - 2			
2.3	a.	Explain briefly beam-column under biaxial bending.			
		4	10	L1	CO
	b.	Briefly describe elastic lateral-torsional buckling of beam-columns.			
		deating of beam-columns.	10	L1	CO2
		OR			
.4	a.	A non-sway column in a building frame with flexible joints is 4 m high and	20	T 2	
-	Name of the	subjected to the following load and moment	20	L3	CO2
	72	ractored axial load = 500 kN			
		Factored moment $M_Z = At$ top of column = 27 kN-m			
30		At bottom of column = 45 kN _{-m}			
		Design a suitable beam-column assuming $f_y = 250 \text{ N/mm}^2$. Take effective	1		
			- 34		
		length of the column as 0.81 along both the aver	- 4	1	
		length of the column as 0.81 along both the axes.			
		Module 3			
.5		Module 3			
.5	a.]	Module – 3 Mention the different guidelines for the design of beams with openings.	10	L1	CO2
	a.]	Module – 3 Mention the different guidelines for the design of beams with openings. Explain force distribution and failure petterns of the design of beams.			
	a.]	Module – 3 Mention the different guidelines for the design of beams with openings. Explain force distribution and failure petterns of the design of beams.	10 10	L1 L1	CO2

			-	.2C3	
Q.6	a.	Design the top chord members of a Vivendeel girder for the following data: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	L3	CO2
		Module – 4			
Q.7	a.	List out advantages of cold formed steel sections.	5	I.1	CO2
Q.	a.	List out advantages of cold formed seed sections.			002
	b.	Find the safe load carrying capacity of a column shown in Fig. Q7 (b). With an effective length of 3.2 m. Take $f_y = 250 \text{N/mm}^2$. 4mm 2mm 120mm Fig. Q7 (b) OR	15	L2	CO2
Q.8	a.	Determine the permissible axial load on the column section shown in Fig. Q8. The effective length of the column is 4 m. Steel has yield stress of 235 N/mm ² . Take $E = 2 \times 10^5 \text{ N/mm}^2$.	20	L2	CO2
		Module – 5			
Q.9	a.	Explain briefly active and passive five protection methods.	8	L1	CO3
		Dig I I I de Climina	12	L1	CO3
	b.	Briefly describe the following: (i) Five resistance level. (ii) Period of structural adequacy (iii) Limiting steel temperature.	12	LI	C03

2 of 3

		OR For a ISMB500@86.9 kg/m beam supporting concrete floor, determine the	10	L2	CO3
Q.10	a.	following:			
		(i) Heated Perimeter (Hp)			
		(ii) Section factor			
		(iii) Exposed surface area to mass ratio (ksm).	_		60
	b.	For a beam ISMB500@86.9 kg/m, determine	10	L2	CO
	١.	(i) Load ratio of five limit state.			
		 (ii) Limiting steel temperature. (iii) Time at which limiting steel temperature is attained for ratio of 			
		(iii) Time at which limiting steel temperature is attained in			
		$\frac{LL}{DL} = \frac{0.67}{0.33}$.			
		Assume $\gamma_m = 1.0$ for DL, and 0.8 for LL.			

		A Property of the Control of the Con			
			Ac.		
			>		
			>		
			>		
			>		
			>		
			>		
			>		
			>		
			>		
			>		
	A		>		
	A		>		
	A		>		
	A				
	A		>		
	A				
	A				
	A				
	A				
	A				
	A				
	Ab	3 of 3			

USN					

22CEE22

Second Semester M.Tech. Degree Examination, June/July 2023 Advanced Wastewater Treatment Technology

Time: 3 hrs.

Max. Marks: 100

Q.1	100			Module –	ľ		M	L	C
	a.	Mentio	n the significance	of wastewater cha	racteristics. Expla	in in detail.	10	L1	CO
	b.	Determ	vine the values of t	ha his a life with		4.>			
	υ.	the tabl	ine the values of t	ne bio – kinetic (constants using the	e data given in	10	L2	CO
		model a	le derived from the	laboratory experi	iments carried out	on the CFSTR			
		Unit	of an activated slud				.		
		No	substration	Reactor	Detention time	Reactor		1	
		110	Conc S _o (mg/L)	substrate Conc	θ (days)	biomass			
			Conc So (mg/L)	S (mg/L)	b "	CMC			
		1	350	12		X(mg/L)			
		2	350	12	3.8	132			
		3	350	20	2.6	130			
		4.		34	1.8	132			
		45	350	60	1.3	123			
			350	70	1.2	119			
		Comput	te the data for (S	S) (VO) X(9	•			
	g Lib	compa	te the data for (So -	S_{o} , $(A0)$, $\overline{S_{o}}$	$\frac{1}{S}$ and 1/S with	plot.	1		
				(30-					100
				OR		- Me -			
2.2	a.	Indicate	with the neat flow	v dingram of Wa					
		salient p	oint	v diagram or wa	stewater treatmen	t process with	10	L1	CO
			oun.	AL Pa	· 3				
	b.	A 300m	nm diameter sewer	is to flow at 0	2 dand -	<u> </u>			
	~.	degree	of self cleansing	agriculant to the	o depth on a gra	de ensuring a	10	L2	CO
		velocity	of 0.9 m/sec. Find	the required and	at obtained at fu	Il depth at a			
		rate of o	of 0.9 m/sec. Find	onth Assuma Ma	ade and associated	velocity and			
		as 0.013	discharge at this de the variations of n	with donth man	inning s rugosity	co.efficient n			
11		45 0.015	the variations of h	with depth may i	be neglected.				
				Module – 2	\				
2.3	a.	Describe	e equalization Und	or what aircreat)				
	9	volume	e equalization. Und of the equalization	basin is astimate	ances this is provi	ded? How the	10	L1	CO
		· oranic ·	or the equalization	oasiii is estimated	1?				
	b.	Assumir	ng suitable design						
		chamber	ng suitable design	criteria, design	a horizontal flo	ow type grit	10	L2	CO
		m ³ /day r	for a proposed so	ewage treatment	plant expected to	treat 60,000			
		rates are	maximum flows. Tl	the estimated aver	age and minimum	sewage flow			
	10	velocity	45,000m ³ /day and	15,000 m ² /day	respectively. The	flow through			
		velocity	of 0.3m/sec is to be	e controlled by a	proportional weir.	8			
			- B						
			4	OP					
0.4	a.	Point out	t the design criteria	OR of screens and di	iscuse the times of	0000000	10	این	
.4	a.	Point out	t the design criteria	OR of screens and di	iscuss the types of	screens.	10	L1	CO2

				22	CEE
	b.	The cumulative flow of wastewater reaching a treatment plant in a day varies as shown in table. Determine the capacity of an equalization basis for the given flow variation. Time (h) 0 2 4 6 8 10 12 14 Cumulative flow (m³) 0 25 50 75 100 120 130 140 Time (h) 16 18 20 22 24 Cumulative flow (m³) 150 160 170 198 225	y 10	0 L:	2 CO2
		Module – 3			
Q.5	a.	With the aid of neat flow diagram, explain the concept of Rotating biological contractors.) L1	CO3
Q.6	a. b.	The average operating data for a conventional activated sludge process plant as follows: * Sewage flow = 50,000 m³/day * Volume of the aeration tank = 16,000m³. * Influent BOD = 250 mg/L * Effluent BOD = 30mg/L * Mixed Liquor suspended solids = 2500mg/L (MLSS) * Effluent suspended solids = 40 mg/L. * Waste sludge suspended solids = 12,000 mg/L * Quantity of waste sludge = 250m³/day. Based on the above information, determine i) Aeration period (hours) ii) Food to micro organisms ratio (F/M) iii) Percentage efficiency of BOD removal iv) Sludge age. OR With the aid of schematic diagram, explain the concept of Bio – tower. Determine the size of a high rate trickling filter for the following data.	10	L1	CO3
	U.	Determine the size of a high rate trickling filter for the following data: * Sewage flow = 5 MLD ; Recirculation ratio = 1.5 * BOD of raw sewage = 250mg/L * BOD removal in primary clarifier = 30% * Final effluent BOD desired = 30mg/L.	10	L2	CO3
Q.7	a.	Module – 4			
٧٠،		Explain the factors affecting nitrification process.	10	L1	CO4
	b.	Write a detailed note on wastewater disinfection. OR	10	L1	CO4
Q.8	a.	Explain the concept of enhanced biological phosphorus removal process.	10	L1	CO4
	b.	Mention the application of electro oxidation process for effluent treatment.	10	L1	CO4
Q.9		Module – 5			
Ų.9	a.	Explain the different types of sludge dewatering.	10	L1	CO5
	b.	Explain the concept of soak pits.	10	L1	CO5
		OR			
Q.10		Explain the Alkaline stabilization sludge.	10	L1	CO5
	b.	Explain the concept of Septic tanks.	10	L1	CO5
		** 2 of 2 * *			

							1
SN	1				9 1		
~-,		- 1	- I	- 1/	1 1	- 1	4

22CEE21

Second Semester M.Tech. Degree Examination, June/July 2023 Industrial Wastewater Treatment

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. Assume any missing data.

-		Module – 1	M	L	C
Q.1	a.	quality.	10		-
	b.	What is meant by "Effluent Standard" and "Stream Standard"? What are the salient features of them?	10	L1	CO
		OR			
Q.2	a.	Discuss the effect of Industrial wastewater on sewage treatment plant.	10	L1	CO
	b.	Explain the feasibility of combined treatment of Industrial raw waste with domestic waste water.	10	L1	COI
4000		Module – 2			
Q.3	a.	Discuss the step by step procedure to conduct Industrial Waste survey.	10	L1	CO2
	b.	Explain the different methods of sampling and give its significance.	10	L1	CO2
0.4	T	OR			1
Q.4	a.	With neat sketch, explain the oxygen sag curve and explain Reoxygenation and Deoxygenation.	8	L1	CO2
	b.	A City discharges 100 cumecs of sewage into a river, which is fully saturated with oxygen and flowing at the rate of 1500 cumecs during its lean days with a velocity of 0.1m/sec. The 5 days BOD of sewage at the given temperature is 280mg/l. Find when and where the critical DO deficit will occur in the downstream portion of the river and what is its amount. Assume coefficient of purification of the stream F as 4 and coefficient of	12	L2	CO2
	1	deoxygenation (K_D) as 0.1. Also assume saturation DO as 9.2mg/ ℓ .			
		Module 3			
Q.5	a.	Module – 3 List the different methods of removal of organic dissolved solids from Industrial wastewater and explain any four methods in detail.	10	L1	CO3
Q.5	a. b.	Module – 3 List the different methods of removal of organic dissolved solids from List the different methods of removal of organic dissolved solids from List the different methods of removal of organic dissolved solids from List the different methods of removal of organic dissolved solids from List the different methods of removal of organic dissolved solids from List the different methods of removal of organic dissolved solids from List the different methods of removal of organic dissolved solids.			CO3
Q.5		Module – 3 List the different methods of removal of organic dissolved solids from Industrial wastewater and explain any four methods in detail. Explain in brief, how volume reduction is brought about during handling of Industrial wastewater.			
Q.5		Module – 3 List the different methods of removal of organic dissolved solids from Industrial wastewater and explain any four methods in detail. Explain in brief, how volume reduction is brought about during handling of Industrial wastewater. OR What is Neutralization? Explain the different methods in the different methods in detail.			

Q.:		neat now madram overlain it			
		Heat How diagram evaluin the			
Q.8	l.	cotton textile mill wastewater.	f 1	2 1	1 6
Q.8	1.			2 L	1 C
Q.8	b	Explain the massive lime treatment for puls and			-
Q.8		Explain the massive lime treatment for pulp and paper mill waste with flow diagram.	v 8	L	C
Q.8					
17723	a.	Explain with a flow 1:	10		
	200	Explain with a flow diagram, the treatment of Tannery wastewater.	10) T 1	-
	b.	With the neat flow sheet, explain the wastewater treatment for large distillery Industry.	1,) L1	C
		distillery Industry. Capitali the wastewater treatment for large	10	L1	CO
Q.9	a.	Write an apple			
	4.	Write an explanatory note on Bioremediation of contaminated soil.	0	7.	1 -
	b.	Explain Low activity and III-1	8	L1	CO
	1	Explain Low activity and High activity radiation and also given the application of radioactive techniques for wastewater treatment.	12	L1	CO
-		techniques for wastewater treatment.			CO
Q.10		Write or 1			
Z.10	a.	write a short note on :	-		
5-202		i) Biomonitoring ii) Criminal and Regulatory Liabilities.	8	L1	CO:
	b.	Define Environmental Audit Control			
		Define Environmental Audit. Explain briefly the objectives, benefits and methodology of Environmental Audit.	12	L1	COS
		Addit.		~	COS
4	3	****			
*		2 of 2			

USN												22CEE231
-----	--	--	--	--	--	--	--	--	--	--	--	----------

Second Semester M.Tech Degree Examination, June/July 2023 Environmental Geo-Technology

Time: 3 hrs. Max. Marks: 100

			-	_	
	_	Module – 1	M	L	C
Q.1	a.	Explain the environmental cycle and their interaction with geo-technology with sketch.	10	L2	CO1
	b.	Explain the geo-technical parameters governing soil-pollutant interaction.	10	L2	CO1
		OR			
Q.2	a.	Explain how failures of foundations occurs due to pollutants.	10	L2	COI
	b.	Explain in detail the classification of wastes.	10	L2	COI
		Module = 2			
Q.3	a.	Explain the process of safe disposal of wastes.	10	L2	CO1
	b.	Explain inorganic and organic stabilization of contaminated soils.	10	L2	COI
		OR			
Q.4	a.	Explain the following: i) Adsorption and Absorption ii) Precipitation and Detoxification.	10	L1	CO1
	b.	Explain current practices of waste disposal.	10	L2	COI
			10	LL	COI
		Module – 3			
Q.5	a.	Explain contaminant transport by advection and diffusion with the help of governing equations.	10	L2	CO3
	b.	Explain biodegradation process.	10	L2	CO2
	*	OR	10	LE	C 0 2
Q.6	a.	What are the preventive measures to be taken in protecting aquifers? Explain.	10	L2	CO2
	b.	What are the hydrological factors consideration to be taken in land fill design? Explain with detailed sketch.	10	L2	CO2
		Module – 4			
Q.7	a.	Explain the methodology to review current soil-testing concepts.	10	L2	CO ₂
	b.	Explain the Electrical resistivity box test.	10	L3	CO2
		ÖR			
Q.8	a.	Explain the guarded hotplate test to determine dielectric constant of soil.	10	L3	CO2
	b.	Explain various approaches of site characterization.	10	L2	CO2
		Module – 5			002
Q.9	a.	Explain factors affecting bioremediation process.	10	L2	CO3
	b.	Explain the applications of soil wash process.	10	L2	CO3
		OR		-14	003
Q.10	a.	Explain the components of monitoring wells neat sketch.	10	L2	CO3
	b.	Explain the functions of geo synthetics in engineered landfills with a neat	10		CO3

USN					

22CSE233

Second Semester M.Tech. Degree Examination, June/July 2023 Earthquake Resistant Structures

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. Use of IS code 1893 is permitted IS code 13920 and relevant code's are permitted.

0.1	T	Module – 1	M	L	C
Q.1	a.	Elaborate the elastic rebound theory and plate tectonic theory.	8	L1	CO
	b.	Explain the characteristics of body waves and surface waves.	6	L1	CO
	c.	Differentiate between magnitude and intensity of earthquake.	6	L1	CO
		OR			
Q.2	a.	Differentiate between the structural behavior under gravity loads and under lateral loads such as earthquake.	8	L1	CO
	b.	What are the requirements of efficient earthquake resistant structural system?	6	L1	COI
	c.	Explain different damping devices used in building structures.	6	L1	CO
	_	Module – 2			
2.3	a.	Explain D-V-A response spectrum and significance of various regions.	12	L1	CO2
	b.	Explain strong motion characteristics of ground.	8	L1	CO2
).4		The plan and elevation of a three-storey RCC school building is shown in		h.,\	
	4	Fig.Q.4. The building is located in seismic zone V. The type of soil encountered is medium stiff and it is proposed to design the building with a special moment resisting frame. The intensity of dead load is 10kN/m² and floors are to cater to an imposed load of 3kN/m². Determine the design seismic loads on the structure by static analysis.			
	1.0	100		1	
		Fig.Q.4 1 of 2			

Q.5	a.	Eval	Module – 3			CSE2
Q.5	a.	Expla	in the structural configuration for earthquake resistant design.		8 1	2 00
	b.	Illustra	ate plan irramination 1	•	0 1	_2 C(
			ate plan irregularities and vertical irregularities with neat sketches.	6	I	.2 CC
	c.	Explai	n between soft storey and weak storey.		-	
			and weak storey.	6	L	2 CC
Q.6	T .	Е	OR			
Q.0	a.	Explai	n modeling concepts of infilled masonry walls.	7 6		-
	b.			8	L	2 CO
	J.	Explair	n the slenderness concept of masonry wall with neat sketches.	6	1	1 00
	c.	Explair	the failure new C.	0	L	CO
		-Apiun	the failure pattern of masonry structures with neat sketches.	6	L2	CO
					1.2	
Q.7	a.	What is	ductility? Discuss the feeten Co.			
		i i i i i i i i i i i i i i i i i i i	ductility? Discuss the factors affecting ductility in RCC building.	10	L2	CO
	b.	Explain	in detail with sketches the duotile day it			
		bending	and axial load.	10	L2	CO
0.0				4	1	63
	1 1/3	D :	OR V	-	-	
Q.8		Design t	the reinforcement for a cal	120		
Q.8		Design the follo	the reinforcement for a column of size 450 × 450mm, subjected to	20	L3	CO4
Q.8		Design the follobraced a	the reinforcement for a column of size 450 × 450mm, subjected to	20	L3	CO4
Q.8		Design to the follo braced a Fe-415 s	the reinforcement for a column of size 450 × 450mm, subjected to twing forces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel.	20	L3	CO4
Q.8		Design to the follo braced a Fe-415 s	the reinforcement for a column of size 450 × 450mm, subjected to the reinforces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and teel. Dead load Live load Seismic load	20	L3	CO4
Q.8		Design (the follo braced a Fe-415 s	the reinforcement for a column of size 450 × 450mm, subjected to the swing forces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load	20	L3	CO4
Q.8		Design to the follo braced a Fe-415 s	the reinforcement for a column of size 450 × 450mm, subjected to the swing forces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load	20	L3	CO4
		braced a Fe-415 s	the reinforcement for a column of size 450×450 mm, subjected to the swing forces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load Axial load (kN) 1000 800 550 Moment kN-m 50 40 100	20	L3	CO4
		braced a Fe-415 s	the reinforcement for a column of size 450×450 mm, subjected to the swing forces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load Axial load (kN) 1000 800 550 Moment kN-m 50 40 100	20	L3	CO4
2.9	a. E	braced a Fe-415 s	the reinforcement for a column of size 450 × 450mm, subjected to the reinforces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load Axial load (kN) 1000 800 550 Moment kN-m 50 40 100 Module - 5 eismic demand and seismic capacity.		L3	CO4
0.9	a. E	braced a Fe-415 s Explain s	the reinforcement for a column of size 450 × 450mm, subjected to the reinforces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load	10	L2	C05
0.9	a. E	braced a Fe-415 s Explain s	the reinforcement for a column of size 450 × 450mm, subjected to the reinforces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load	10		
0.9	a. E	braced a Fe-415 s Explain s	the reinforcement for a column of size 450 × 450mm, subjected to the reinforces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load	10	L2	C05
ì	a. E	Explain s Explain s Explain s	the reinforcement for a column of size 450 × 450mm, subjected to the reinforces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load	10	L2	C05
).9	a. E	Explain s Explain s Explain s Explain s Explain s	the reinforcement for a column of size 450 × 450mm, subjected to the reinforces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load	10 10	L2 L2	CO5
).9 a	a. E	Explain s Explain s Explain s Explain s Explain s Explain s	the reinforcement for a column of size 450 × 450mm, subjected to the reinforces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load	10 10	L2	C05
).9 a	a. E	Explain s	the reinforcement for a column of size 450 × 450mm, subjected to the reinforces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load	10 10	L2 L2	CO5
).9 a	a. E e: W i) ii)	Explain s	the reinforcement for a column of size 450 × 450mm, subjected to the reinforces. The column has an unsupported length of 3m and is against sidesway in both directions. Use M25 grade concrete and steel. Dead load Live load Seismic load	10 10	L2 L2	CO5

USN						
	 100	1.7	-5/11/-11			

22CEE241

Second Semester M.Tech. Degree Examination, June/July 2023 Water Resources Engineering and Applied Hydraulics

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. Assume suitable missing data if necessary.

		Module – 1	M	L	C
Q.1	a.	Write a note on: i) Water resources of the world, India and Karnataka ii) National water policy	10	L2	CO1
	b.	Define Raingauge density. Explain how to determine optimum number of Raingauge stations.	10	L2	CO1
	1	OR			
Q.2	a.	Define and explain hydrologic cycle with a neat sketch.	10	L2	CO1
	b.	Explain the methods of find missing precipitation.	10	L2	CO1
		Module – 2			
Q.3	a.	Define unit hydrograph and mention its assumptions.	4	L2	CO2
	b.	Explain base flow separation methods.	6	L2	CO2
	c.	Define Hydrograph. Explain the components with a neat sketch.	10	L2	CO2
		OR			
Q.4	a.	Define flood Routing. Explain channel and Reservoir routing.	10	L2	CO2
41	b.	Route the following flood hydrograph through a river reach for which $K = 12.0$ hr and $x : 0.20$. At the start of the inflow flood, the outflow discharge is $10\text{m}^3/\text{s}$ Time (h) 0 6 12 18 24 30 36 42 48 54 Inflow (m³/s) 10 20 50 60 55 45 35 27 20 15	10	L3	CO2
		Module – 3			,
Q.5	a.	Define Water Hammer. Derive expression for pressure Rise due to gradual closure of valve.	10	L3	CO3
	b.	Write a note on surge tank.	5	L2	CO3
	c.	Water is flowing through a pipe of diameter 30cm and length 200m with a velocity of 2.5m/s. A valve is provided at the end of the pipe. If the valve is closed in 30 seconds, find the rise the pressure take the velocity of pressure wave as 1500m/s.	5	L3	CO3

22CEE2

		OR			
Q.6	a.	Explain Area-velocity method to measures the discharge.	10	L2	CO3
	b.	Derive an expression for discharge through venturiflume.	10	L3	CO3
		Module – 4			
Q.7	a.	Define the following: i) aquifer ii) aquiclude iii) aquifuge iv) porosity v) specific yield.	5	L2	CO4
	b.	What are the points to be considered in selection of suitable site for a bore wells.	5	L2	CO1
	c.	What are the methods of artificial ground water recharge? List the sources of ground water pollution.	10	L3	CO1
		OR		2015	L.,
Q.8	a.	Explain confined and unconfined aquifer with a neat sketch.	10	L2	CO4
	b.	Explain the different types of open wells with a neat sketch.	10	L2	CO4
	V:	Module = 5			
Q.9	a.	Define Remote sensing. Explain different types of sensors used in remote sensing.	10	L2	CO5
	b.	Explain in detail on the different types of data utilize in GIS technologies.	10	L2	CO5
	22	OR			
Q.10	a.	What is GIS? Describe the different components of GIS.	10	L2	CO5
	b.	Explain spectral properties of soil, water and vegetation with a neat sketch.	10	L3	CO5

* * * *

34
USN
Cort

Second Semester M.Tech Degree Examination, June/July 2023 Design of High Rise Structures

Time: 3 hrs.

buildings.

Max. Marks: 100

		Module – 1	M	L	C
Q.1	a.	Explain design criteria of tall structures.	10	L1	CO1
	b.	Explain: i) Sequential loading ii) Construction load.	10	L1	CO1
		OR			
Q.2	a.	Explain: i) Fibre reinforced concrete ii) High performance concrete iii) Light weight concrete.	12	L1	COI
	b.	Write a note on gravity loading of tall structures.	8	L2	COI
	1	Module – 2			
Q.3	a.	Briefly explain the wind tunnel experiment method.	10	L2	CO2
	b.	Explain equivalent static method for calculating lateral force due to earthquake.	10	L2	CO2
	_	OR			-
Q.4	a.	Explain briefly working stress design and limit state method.	8	L1	CO2
	b.	A 3 storey symmetrical RC school building situated at Bhuj with the following data: Plan dimensions = 7m Storey height = 3.5m Total weight of beam in storey = 130kN Total weight of slab in storey = 250kN Total weight of column in storey = 50kN Total weight of walls in storey = 530kN Live load = 130kN Weight of terrace floor = 655kN The structure is resting on hard rock. Determine the total base shear and lateral loads at each floor levels.	12	L2	CO2
		Module – 3			
Q.5	a.	What are the factors affecting growth, height and structural form of Tall	10	¥ 6 1	
		buildings.	10	L2	CO ₃

22CSE242

b. Explain Rigid frame structures. 10 L2 C	b. Explain Rigid frame structures. Module - 4	0.6	1.	OR OR	7		
Module – 4 Q.7 a. Explain assumptions in modeling of tall structures. b. Explain approximate modeling of slabs. OR Q.8 a. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. D. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	Module – 4 Q.7 a. Explain assumptions in modeling of tall structures. 10 L2 b. Explain approximate modeling of slabs. 10 L2 Q.8 a. Explain approximate modeling and accurate modeling of tall structures. 10 L2 b. What do you mean by lumping? Briefly explain the types of lumping. 10 L2 Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. 10 L3 of the content of plumb effects. 10 L3 of the content of plumb effects. 10 L3 of the content of plumb effects in tall building in tall buildin	Q.6	a.	Explain In-filled frame structures.	10	L2	CO
Module – 4 Q.7 a. Explain assumptions in modeling of tall structures. b. Explain approximate modeling of slabs. OR Q.8 a. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. D. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	Module – 4 Q.7 a. Explain assumptions in modeling of tall structures. b. Explain approximate modeling of slabs. OR Q.8 a. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. D. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.		b.	Explain Rigid frame structures.	10	1.2	-
Q.7 a. Explain assumptions in modeling of tall structures. b. Explain approximate modeling of slabs. OR Q.8 a. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. DR Q.10 a. Explain creep and shrinkage effects in tall building. DR Q.10 a. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	Q.7 a. Explain assumptions in modeling of tall structures. b. Explain approximate modeling of slabs. OR Q.8 a. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.				10	LZ	CO
b. Explain approximate modeling of slabs. OR Q.8 a. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	b. Explain approximate modeling of slabs. OR Q.8 a. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. D. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	Q.7	a.	Explain assumptions in modeling of tall structures	1.0	·	
Q.8 a. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. 10 L2 C Module - 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. 10 L3 C OR Q.10 a. Explain creep and shrinkage effects in tall building. 10 L3 C OR Q.10 b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	Q.8 a. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. 10 L2 Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. 10 L3 C OR Q.10 a. Explain creep and shrinkage effects in tall building. 10 L3 C DR Q.10 a. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.				10	L2	CO
A Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. D. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	A. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. 10 L2 Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. 10 L3 COR Q.10 a. Explain creep and shrinkage effects in tall building. 10 L3 COR Q.10 i. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.		D.	Explain approximate modeling of slabs.	10	L2	CO
Q.8 a. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. 10 L2 C Module - 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. 10 L3 C OR Q.10 a. Explain creep and shrinkage effects in tall building. 10 L3 C OR Q.10 b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	Q.8 a. Explain approximate modeling and accurate modeling of tall structures. b. What do you mean by lumping? Briefly explain the types of lumping. 10 L2 Module - 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. 10 L3 (OR Q.10 a. Explain creep and shrinkage effects in tall building. 10 L3 (DR Q.10 in Explain: i) Effect of foundation rotation ii) Stability of tall buildings.			OR			
Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. 10 L3 C b. Explain out of plumb effects. 10 L3 C OR Q.10 a. Explain creep and shrinkage effects in tall building. 10 L3 C b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings. 10 L3 C	Module – 5 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	Q.8		Explain approximate modeling and accurate modeling of tall structures.	10	L2	СО
 Q.9 a. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings. 10 L3 C C <	A. Explain the approximate method of overall buckling analysis of frames. b. Explain out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.		b.	What do you mean by lumping? Briefly explain the types of lumping.	10	L2	CO
Description out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. Description in the plumb effects. OR Description out of plumb effects. OR Description in tall building. In the plumb effects. In the plumb effec	D. Explain out of plumb effects. OR Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	0.0	0	Module - 5			
Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	Q.5	a.	Explain the approximate method of overall buckling analysis of frames.	10	L3	CO
Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.		b.	Explain out of plumb effects.	10	Г2	CO
 Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings. 	 Q.10 a. Explain creep and shrinkage effects in tall building. b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings. 				10	LS	CO:
b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	b. Explain: i) Effect of foundation rotation ii) Stability of tall buildings.	Q.10	a.	Explain creen and shrinkage effects in tall building			
i) Effect of foundation rotation ii) Stability of tall buildings.	i) Effect of foundation rotation ii) Stability of tall buildings.				10	L3	CO
ii) Stability of tall buildings.	ii) Stability of tall buildings.		b.	Explain:	10	L3	COS
				ii) Stability of tall buildings		23358 I	
			A				

USN

20CSE322

Third Semester M.Tech. Degree Examination, June/July 2023 Optimization Techniques

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. What is optimization? State six applications of optimization.

(08 Marks)

State and prove the necessary condition for relative minimum of a function of a single variable. Also state the sufficient condition. (12 Marks)

OR

2 a. Find the extreme points of function, $f(x, y) = x^3 + 3y^3 + 3x^2 + 3y^2 + 24$ and determine their nature also. (08 Marks)

b. Find the dimensions of a cylindrical tin with top and bottom made up of sheet metal to maximize its volume such that the total surface area is equal to $A_0 = 24\pi$. Use Lagrange method.

Module-2

3 a. List the applications of linear programming.

(05 Marks)

b. Find all the basic solutions corresponding to system of equations:

$$2x_1 + 3x_2 - 2x_3 - 7x_4 = 1$$
$$x_1 + x_2 + x_3 + 3x_4 = 6$$

$$x_1 - x_2 + x_3 + 5x_4 = 4$$
.

(15 Marks)

OR

4 a. Write the dual of the following linear programming problem:

Maximize $f = 50x_1 + 100x_2$

Subjected to
$$2x_1 + x_2 \le 1250$$

$$2x_1 + 5x_2 \le 1000$$
$$2x_1 + 3x_2 \le 900$$

$$x_2 \le 150$$

Where $x_1 \ge 0$ and $x_2 \ge 0$.

(05 Marks)

b. Show that the following problem has infinite number of solution by simplex method.

Minimize $f(x) = -40x_1 - 100x_2$

Subjected to constraints

$$10x_1 + 5x_2 \le 2500$$

$$x_1 \ge 0$$

$$4x_1 + 10x_2 \le 2000$$
 $x_2 \ge$

$$2x_1 + 3x_2 \le 900$$

(15 Marks)

Module-3

5 a. Describe various methods of non-linear optimization.

(05 Marks)

b. Find the minimum of $f = \lambda^5 - 5\lambda^3 - 20\lambda + 5$ by cubic interpolation method.

(15 Marks)

20CSE322

OR

6 a. Differentiate between Fibonacci method and Golden section method.

(05 Marks)

b. Minimize $f(x) = 0.65 - \left[\frac{0.75}{1+x^2}\right] - 0.65x \tan^{-1}\left(\frac{1}{x}\right)$. Use Fibonacci method, n = 6 iterations in interval [0, 3].

Module-4

7 Use Exterior penalty function method to,

Minimize $f = 9x_1^2 + 4x_2^2 + 3x_1 + 3x_2$

Subjected to, $9(x_1) = 5 - 2x_1 \le 0$

$$9(x_2) = 2x_2 - 3 \ge 0.$$

(20 Marks)

OR

8 a. Write step by step procedure for cutting plane method.

(10 Marks)

b. Write step by step procedure for complex method.

(10 Marks)

Module-5

9 a. Describe geometric and dynamic programming problem.

(05 Marks)

o. Solve NLPP using geometric programming method,

Minimize $f = 7x_1x_2^{-1} + 3x_2x_3^{-2} + 5x_1^{-3}x_2x_3 + x_1x_2x_3$.

(15 Marks)

OR

10 a. Explain the types of multistage decision problem.

(05 Marks)

b. An open cylindrical vessel is to be constructed to transport 100 m³ of a chemical from a store to a factory. The sheet metal used for bottom cost Rs.1000/- and that used for the cylindrical wall costs Rs.500/- square meter. If it costs Rs.100/- for each round trip of vessel, find the dimensions of the vessel for minimizing the transportation cost. Assume that vessel has no salvage upon completion of operation. (15 Marks)

* * * * *

20MMD11

First Semester M.Tech. Degree Examination, June/July 2023 **Mathematical Methods in Engineering**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain about:
 - Inherent error i)
 - ii) Rounding off error
 - iii) Truncation error
 - iv) Absolute error
 - v) Relative and percentage error

(10 Marks)

b. A parachutist of mass 68.1Kg jumps out of a stationary not air balloon. Use $\frac{dv}{dt} = g - \frac{c}{m}V$ to compute the velocity V prior to opening the chute. The drag coefficient is equal to 12.5Kg/s. Given that $g = 9.8 \text{m/sec}^2$, V = 0 at t = 0. Tabulate the values of v for t = 2(2) 14. (10 Marks)

OR

- Determine the maximum relative error for the function $F = 3x^2y^2 + 5y^2z^2 7x^2z^2 + 38$. For x = y = z = 1 and $\Delta x = -0.05$, $\Delta y = 0.001$ and $\Delta z = 0.02$.
 - b. The deflection of a strut of length ' ℓ ' with one end (x = 0) built in and other supported and subjected to end thrust P, satisfies the equation $\frac{d^2y}{dx^2} + a^2y = \frac{a^2R}{P}(\ell - x)$. Prove that the deflection curve is $y = \frac{R}{P} \left(\frac{\sin x}{a} - \ln x + \ln x \right)$ where $a\ell = \tan a\ell$ (10 Marks)

Module-2

Solve the system of equations

$$\begin{bmatrix} 4 & 2 & 14 \\ 2 & 17 & -5 \\ 14 & -5 & 83 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 14 \\ -101 \\ 155 \end{bmatrix}$$

Using Cholesky method

(10 Marks)

b. By employing the Given's method, reduce the matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -2 \\ 1 & 2 & -2 \\ -2 & -2 & 3 \end{bmatrix}$$

To tridiagonal form and hence find its largest eigen value.

(10 Marks)

OR

Solve the system of equations

$$x + y + z = 9$$

 $2x - 3y + 4z = 13$
 $3x + 4y + 5z = 40$

(10 Marks)

(10 Marks)

b. Using the partition method, solve the system of equations

$$x + y + z = 1$$

 $4x + 3y - z = 6$
 $3x + 5y + 3z = 4$

Module-3

Perform two iteration using Muller method to find the root of the equation

$$f(x) = \cos x - xe^x = 0$$
, $x_0 = -1$, $x_1 = 0$, $x_2 = 1$.

(10 Marks)

b. Using Picard's method, find approximate values of Y and Z corresponding to x = 0.1. Given

that
$$y(0) = 2$$
, $z(0) = 1$ and $\frac{dy}{dt} = x + z$, $\frac{dz}{dx} = x - y^2$. (10 Marks)

Apply Graeffe's root squaring method to find the root of $x^3 - 2x^2 - 5x + 6 = 0$ squaring trice. (10 Marks)

By employing the Runge - kutta method, find an approximate solution for Y at the point x = 0.1 for the differential equation.

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0.$$
 Under the conditions $y(0) = 3$, $y'(0) = -5$. Take step length $h = 0.1$

(10 Marks)

Module-4

Evaluate the pivotal values of the equation $u_{tt} = 16u_{xx}$ taking $\Delta x = 1$ upto t = 1.25. The boundary conditions are u(0, t) = u(5, t) = 0, $u_t(x, 0) = 0$ and $u(x, 0) = x^2(5 - x)$.

b. Given the values of u(x, y) on the boundary of the square in the Fig Q7(b), evaluate the functions u(x, y) satisfying the Laplace equation $\nabla^2 u = 0$ at the pivotal point of this figure by Gauss - Seidal method.

(10 Marks)

20MMD11

OR

- 8 a. Solve the boundary value problem $u_t = u_{xx}$ under the conditions u(0, t) = u(1, t) = 0 and $u(x, 0) = \sin \pi x$, $0 \le x \le 1$ using Schmidt method $\left(\text{Take } h = 0.2 \text{ and } \alpha = \frac{1}{2} \right)$. (10 Marks)
 - b. Solve $25u_{xx}=u_{tt}$ at the pivotal point given u(0,t)=0=u(5,t); $u_t=(x,0)=0$ and $u(x,0)=\begin{cases} 20x, & 0\leq x\leq 1\\ 5(5-x), & 1\leq x\leq 5 \end{cases}$ by taking h=1. Compute u(x,t) for $0\leq t\leq 0.1$. (10 Marks)

Module-5

- 9 a. Explain the following terms:
 - i) Null Hypothesis
 - ii) Type I and Type II errors
 - iii) Level of significance
 - iv) Confidence limits

(10 Marks)

b. Five dice were thrown 96 times and the number 1, 2 or 3 appearing on the face of the dice follows the frequency distribution as follows: No of dice showing

1, 2 or 3	14	5	4	3	2	1	0
Frequency		7	19	35	24	8	3

Test the hypothesis that the data follow a binomial distribution $\chi^2_{0.05} = 11.07$ for 5 d.f.

(10 Marks)

OR

10 a. Following are the weekly sale records (in lakh) of three salesmen A, B and C of a company during 13 sale – calls.

A 3 4 3 5

B 6 3 3 4

C 7 3 4 6 5

Test whether the sales of three salesman are different $[F_{2,10,0.05} = 4.10]$

(10 Marks)

b. Three varieties of a crop are tested in a RBD with 4 replications, the layout being given in the table. The plot yields are also given. Analyze the experimental yield and state your conclusions.

					8		
В	8	A	4	В	6	C	9
C	7	В	6	C	10	A	6

(10 Marks)

 $[F_{3,6,0.05} = 4.76, F_{2,6,0.05} = 5.14]$

* * * * *

USN												20MMD12
-----	--	--	--	--	--	--	--	--	--	--	--	---------

First Semester M.Tech. Degree Examination, June/July 2023 Design of Vibration Control Systems

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define Simple Harmonic Motion (SHM). Represent SHM and their derivatives using vector diagram. (04 Marks)
 - b. Differentiate between Under Critical and over damping. Represent the motion of above systems graphically.
 - c. Define logarithmic decrement. Derive the expression of logarithmic decrement in terms of damping factor. (06 Marks)
 - d. A vibrating system in a vehicle is to be designed with the following parameters, K = 100 N/m, C = 2 N-s/m, m = 1 kg. Calculate the decrease of amplitude from its starting value after 3 complete oscillations.

OR

- 2 a. Name the various methods to control vibrations in dynamic system. (04 Marks)
 - b. What is vibration isolation? Differentiate between active isolator and passive isolator.

(06 Marks)

c. Describe the working of Active vibration isolation system.

(10 Marks)

Module-2

- a. Define transient response. Give the mathematical and graphical representation of impulse excitation.

 (06 Marks)
 - b. Obtain the response for a spring-mass system subjected to the following excitation as shown in Fig. Q3 (b). (14 Marks)

OR

- 4 a. Represent Random time function mathematically and graphically. Give some examples of it.

 (04 Marks)
 - b. Write the expressions for expected value; Mean Square value, Variance and Standard deviations of Random Time Function x(t). (04 Marks)
 - c. A single DOF system with natural frequency $\omega_n = \sqrt{\frac{K}{m}}$ and damping factor (ξ) = 0.2 is excited by the force $F(t) = F\cos\frac{1}{2}\omega_n t + F\cos\omega_n t + F\cos\frac{3}{2}\omega_n t$. Determine the mean square response of the system.

Module-3 a. Explain the basic features and importance of a vibration measurement using schemat 5 (06 Marks) illustration. (06 Marks) b. Write a note on vibration pickups. c. Name any two frequency measuring instruments. Explain briefly any one measuring (08 Marks) instrument. Name and explain the various equipments required for experimental modal analysis. (10 Marks) Show the general arrangement for the experimental modal analysis of a mechanical system. (10 Marks) Explain briefly the experimental setup. Module-4 What is a noise? List out the various sources of noise pollution. (04 Marks) How a sound wave is represented mathematically? Specify all the terms of an equation. (04 Marks) (12 Marks) Briefly explain the various noise controlling techniques. Define the following with respect to sound wave: 8 (iii) Wave length (iv) Decibles. (04 Marks) (ii) Frequency (i) Amplitude (06 Marks) Write a note on frequency analysis of soundwave. b. Explain briefly the working of simple sound level meter using a block diagram. (10 Marks) Module-5 How does a continuous system differ from a discrete system in the nature of its equation of (06 Marks) Find the natural frequencies and the free vibration solution of a bar fixed at one end and free (14 Marks) at the other. OR Derive the wave equation for a uniform shaft subjected to torsional vibrations. (10 Marks) 10 a. Determine the equation for the natural frequencies of a uniform shaft in torsional oscillations

with one end fixed and other end free.

2 of 2

(10 Marks)

20MMD13

First Semester M.Tech. Degree Examination, June/July 2023 **Continuum Mechanics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Derive the equation of equilibrium for 3-D state of stress with usual notations. 1 (10 Marks)

The state of stress at a point is given by as follows: $\sigma_x = x^2y + 20$, $\tau_{xy} = 3x^2y$, $\tau_{yz} = yz$, $\tau_{xz} = xz$, $\sigma_y = x^3z + y^2$, $\sigma_z = yz^2 + 10$. Determine the body force distribution at a point (1, 2, 3) so that the stresses are inequilibrium. (10 Marks)

OR

Define the following:

- 1) Stress vector
- ii) Stress tensor
- iii) Principal stress
- iv) Deviatoric tensor
- V) Octahedral stress.

(05 Marks)

b. The state of stress at a point is given by the following matrix:

$$\sigma_{ij} = \begin{bmatrix} 9 & 6 & 3 \\ 6 & 5 & 2 \\ 3 & 2 & 4 \end{bmatrix}$$

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Determine the principal stresses at that point.

(15 Marks)

Module-2

Derive 2D-strain compatibility equations in Cartesian coordinate system. 3 (10 Marks)

Given the following displacement field:

 $U = 3x^2y + y^2$, v = 3yz + xy, $w = 4xz^2 + 5xy^2$. What is the change in distance between two points P and Q after deformation originally at P(1, 2, 3) and Q(1, -1, 2). (10 Marks)

State generalized Hooke's law in terms of engineering constants for homogeneous material. (05 Marks)

Obtain the relationship between Young's modulus (E), poisson's ratio (v) and Lame's constant (λ) .

c. The state of strain at a point in a stressed body is given by $\epsilon_x = 0.001$, $\epsilon_y = -0.003$, $\epsilon_z = \gamma_{xy} = 0$, $\gamma_{xz} = -0.004$, $\gamma_{yz} = 0.001$. Obtain the stress tensor at the point in the body. Take $E = 2.1 \times 10^5 MPa$ and v = 0.28. (10 Marks)

Module-3

Differentiate between plane stress and plane stain problems. 5

(04 Marks)

What is Airy's stress function? When weight is the only body force, show that the solution of a 2D-elasticity problem can be reduced to $\nabla^4 \phi = 0$, where $\phi(x, y)$ is Airy's stress function.

(08 Marks)

c. Investigate what problem of plane stress can be solved by $\phi = \frac{-F}{d^2}xy^2(3d-2y)$ applied to region included in y = 0 to d, x = 0 on the side of x-positive. (08 Marks)

OR

6 a. State the principle of superposition.

(04 Marks)

b. Formulate the suitable stress function $\phi(x, y)$ that satisfy the biharmonic function and applicable for a narrow cantilever beam subjected to an end load (P) at free end. Also obtain the stress distribution. (16 Marks)

Module-4

Obtain the expression for radial and tangential stresses due to centrifugal load for an annular disk (rotating) of uniform thickness.

(10 Marks)

Show that in a hollow rotating disk, the maximum radial stress occurs at the geometric mean
of outer and inner radii of the disk. Also determine its magnitude. (10 Marks)

OR

8 a. Obtain an expression for radial and tangential stresses induced in a circular disk due to uniform temperature distribution $T = \lambda(b^2 - r^2)$ where λ is constant b is outer radius.

(10 Marks)

b. The temperature distribution in a long cylindrical conductor due to the passage of current is given by $T = \lambda(b^2 - r^2)$ where λ is a constant, b is the radius of cylindrical conductor and r is the radial distance from the axis of the conductor. Determine the stresses induced in the conductor due to thermal loading only. Assume both ends are fixed. (10 Marks)

Module-5

9 a. Discuss the torsion of a solid circular cross sectional bar.

(10 Marks)

b. Discuss the torsion of a thin walled section.

(10 Marks)

OR

10 a. Explain viscoelastic behavior of a material and illustrate it lag two simple models. (10 Marks)

b. Explain the following:

i) Newtonian fluid

Stokesian fluid.

(10 Marks)

* * * * *

USN

20MMD15

First Semester M.Tech. Degree Examination, June/July 2023 **Dynamics and Mechanism Design**

Time: 3 hrs.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Explain Planar, Spherical and Spatial mechanisms with examples. 1

(10 Marks)

Define Grashoffs law and elaborate the inversions of Grashoffs law.

(10 Marks)

OR

What are equivalent mechanism? Obtain the equivalent mechanisms of mechanisms shown 2 below Fig.Q2(a).

Fig.Q2(a)(i)(ii)(iii)

(10 Marks)

Explain mechanical advantage and transmission angle.

(10 Marks)

Module-2

Describe the principal of virtual work. 3

(10 Marks)

Explain Halonomic and non-hlonomic constraints.

(10 Marks)

OR

Derive Lagrange's equation from D'Alembert's principle.

(10 Marks)

Find the equation of motion for system shown in Fig.Q4(b) using Hamilton principle.

Fig.Q4(b)

(10 Marks)

Module-3

Explain type, number and dimensional synthesis. 5

(10 Marks)

Elaborate Chebychev spacing of accuracy points.

(10 Marks)

OR

Describe Function generation, Path generation an Body guidance. 6 Explain the two position synthesis of a slider crank mechanism.

(10 Marks)

(10 Marks)45

20MMD15

Module-4

a. Synthesize a linkage to generate function y = log_ex over the interval 10 ≤ x ≤ 60 using an input crank range of 120° and output range of 90° using four position synthesis.
 b. Explain overlay method.

OF

8 a. Obtain the equations for coordinates of coupler curve for slider crank mechanism. (10 Marks)
b. Synthesize a four-bar linkage to give the following values of angular velocities and accelerations using Bloch synthesis.

 $\omega_2 = 200 \text{rad/s}, \quad \omega_3 = 85 \text{ rad/s}, \quad \omega_4 = 130 \text{rad/s}$ $\alpha_2 = 0 \text{ rad/s}^2, \quad \alpha_3 = -1000 \text{rad/s}^2, \quad \alpha_4 = -1600 \text{rad/s}^2.$

(10 Marks)

Module-5

a. Explain the Eulerian angles.
b. What are spatial mechanism explain with examples.
(12 Marks)
(08 Marks)

OR

a. Sketch any two four bar spatial linkages having mobility of m = 1.
b. What is a Gyroscope and obtain equation for Gyroscopic couple.
(10 Marks)
(10 Marks)

* * * * *

Second Semester M.Tech. Degree Examination, June/July 2023 Advanced Finite Element Analysis

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Assume any missing data suitably.

Module-1

- 1 a. Derive the shape function for linear bar element in global coordinates. (06 Marks)
 - b. Consider the bar shown in Fig.Q.1(b). An axial load $P = 200 \times 10^3 N$ is applied as shown using elimination approach for handling boundary conditions, determine:
 - i) Nodal displacements
 - ii) Stress in each element
 - iii) Reaction forces.

(14 Marks)

 $A_1 = 2400 \text{mm}^2$ $E_1 = 70 \times 10^9 \text{N/m}^2$ $A_2 = 600 \text{mm}^2$

 $E_2 = 200 \times 10^9 \text{N/m}^2$

OR

a. Derive stiffness matrix of truss element in 2-dimensions.

- (08 Marks)
- b. For the two bar truss shown in Fig.Q.2(b). Determine the displacements, stress in each elements and reactions at the support. (12 Marks)

$$E = 200GPa$$

 $A = 200mm^2$
for both
elements

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-2

3 a. Obtain [B] matrix for an axisymmetric triangular element.

(10 Marks)

An axisymmetric surface is shown in Fig.Q.3(b). Determine the equivalent loads at nodes 6, 4 and 2 the coordinates of nodes are point 6 are (60, 40)mm point 4 are (40, 55)mm and point 2 are (20, 70)mm, (10 Marks)

OR

- Derive stiffness matrix, consistent load vector due to body force and traction force for axisymmetric triangular element. (20 Marks)47
 - 1 of 2

Module-3

5 a. Derive shape functions of a linear tetrahedral element.

(06 Marks)

b. Derive element strain vector, element stiffness matrix of a linear tetrahedral element.

(14 Marks)

OR

6 a. Derive shape functions of a 8 node hexahedral element.

(10 Marks)

b. Derive body force terms, surface force terms and principal stresses of a tetrahedral (linear) element. (10 Marks)

Module-4

- 7 a. Derive element mass matrix or consistent mass matrix for a bar element. (06 Marks)
 - b. For a beam shown in Fig.Q.7(b), determine the eigen values and corresponding natural frequencies.

Take E = 200GPa, $\rho = 7840 \text{kg/mm}^3$, A = 240mm², I = 200mm⁴

(14 Marks)

OR

For the stepped bars shown in Fig.Q.8. Determine the eigen values and eigen vectors. $E = 200\text{GPa}, \rho = 7830\text{kg/m}^3$. (20 Marks)

Module-5

- 9 a. Derive the shape function of a 1-D bar element with temperature T_1 and T_2 at the nodes.

 (10 Marks)
 - b. Calculate the temperature distribution in a 1-D fin with the physical properties given in Fig.Q.9(b). There is a uniform generation of heat inside the wall of $\overline{Q} = 400 \text{W}/\text{m}^3$.

(10 Marks)

OI

- 10 a. Explain the types of boundary conditions in heat transfer problems. Briefly describe the rate equations. (10 Marks)
 - b. Determine the temperature distribution through the composite wall as shown in Fig.Q.10(b). Convective heat loss occurs on the right side surface. Assume a unit area.

(10 Marks)

Second Semester M. Tech. Degree Examination, June/July 2023 Advanced Machine Design

Time: 3 hrs.

50, will be treated as maipractice.

On completing your answers, compulsarily draw diagonal cross lines on the remaining blank pages

Impurtant Note: 1.

Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Use of data hand book is permitted.

Module-1

- Describe the following with example:
 - Safe life design
 - ii) Fail safe design

iii) Even and uneven materials.

(10 Marks)

- b. A ductile steel bar has yield strength in tension and compression of 350MPa. Using distortion energy and maximum shear stress theory determine the factor of safety for the following plane stress conditions.
 - i) $\sigma_x = 84MPa$, $\sigma_y = 42MPa$

ii) $\sigma_x = 40 \text{MPa}$, $\sigma_y = -70 \text{MPa}$, $\tau_{xy} = 35 \text{MPa}$.

(10 Marks)

OR

- Explain the following with a neat sketch:
 - Coulomb Mohr's theory

ii) Modified Mohr's.

(10 Marks)

- b. The cast Iron specimen has ultimate strength of 210MPa in tension, 700MPa in compression. Find the factor of safety using maximum normal stress theory for the following stress conditions:
 - i) $\sigma_x = 140 \text{MPa}$, $\sigma_y = 42 \text{MPa}$
 - ii) $\sigma_x = 84MPa$, $\tau_{xy} = -56 MPA$
 - $\tau_{xy} = 56 MPa$ iii) $\sigma_x = 484 \text{MPa}$,

(10 Marks)

Module-2

- Explain any three parameters influencing the S N behavior materials. (10 Marks)
 - b. As forged 50MM diameter. 1040 steel rod has $S_u = 650MPa$ and $S_y = 500MPa$. It is subjected to constant amplitude cyclic bending. Determine the following values using appropriate fatigue models.
 - i) Fully reversed bending fatigue strength at 10⁶ cycles
 - ii) S_a and S_M for 10^5 cycles if $R \neq 0$ iii) S_a and S_M for 10^4 cycles if R = 0.

(10 Marks)

OR

- With a neat sketch explain the working of rotating pure bending type of fatigue testing (10 Marks)
 - b. The strain life properties of a material rae as follows: $\sigma_f^1 = 2700 \text{MPa}$ = 1.01, b = 0.08, c = -0.7, E = 200 GPa. Determine:
 - i) Transition life
 - ii) ∈a at 200 reversal

iii) σa at 200 reversal.

(10 Marks)

49

20MMD22

(10 Marks)

Describe the three basic crack displacement modes with sketch. b. A very wide SAE1020 cold rolled thin plate is subjected to constant amplitude uniaxial cycle loads that produce nominal stress varying from $S_{max} = 250 MPa$ to $S_{min} = -50 MPa$. The monotonic properties for this steel are $\sigma_y = 630 \text{MPa}$, $\sigma_u = 670 \text{MPa}$, E = 207 GPa and $K_C = 104 MPa \sqrt{M}$. If an initial, through thickness edge crack of 2mm length existed what will be the fatigue life of the plate? Take $A = 6.9 \times 10^{-12}$ m/cycle and n = 3. versus (ΔK) curve and explain different regions of the curve. Draw sigmoidal (10 Marks) (10 Marks) With a neat sketch explain cycle plastic zone. (10 Marks) With a neat sketch explain spectrum loads. Explain Plamgren - Miner Liner damagerule what are its limitations. (10 Marks) With a neat sketch explain the following:

Module-3

Explain the following

Rain flow counting method

Level crossing counting method.

Friction

8

- Corrosion wear
- Abrasive wear
- Adhesive wear.

(20 Marks)

(10 Marks)

(10 Marks)

(10 Marks) Briefly explain design to avoid surface failures. b. Derive an expression for the contact pressure destitution in spherical contact surface.

(10 Marks)

PORG GAMEME

		SIMELING COULD	
US	N	20	0MMD251
		Second Semester M.Tech. Degree Examination, June/July 2	023
		Automobile System Design	023
Ti	me:	3 hrs	Marks: 100
		Note: 1. Answer any FIVE full questions, choosing ONE full question from each	viarks: 100
		2. Use of Design data hand book is permitted.	en module,
		3. Missing data, if any, may be suitably assumed.	
1	a.	What is the need of aero dynamically profiled body and explain.	
		i) Draw force	
		ii) Lift force	
		iii)Side force	
		iv) Pitching moment	
	h	v) Yawing moment.	(12 Marks)
	υ.	Explain an engine spray formation.	(08 Marks)
2		OR	
2	a.	What do you mean by direct injection system? Explain any two types of pet system for SI engine.	rol injection
	b.	With a neat sketch explain air injection system for diesel engines.	(10 Marks)
		with a near sketch explain all injection system for diesel engines.	(10 Marks)
3	a.	Briefly describe as lindau by	
5	b.	Briefly describe cylinder liners and cylinder lubrication. Explain any two different types of indirect and lines.	(10 Marks)
		Explain any two different types of indirect combustion chambers of CI engines.	(10 Marks)
1		A formatical and the second of	
-	a.	A four stroke diesel engine has the following specification which is working on is mentioned below:	diesel cycle
		i) Compression ratio = 15	
		ii) Stroke volume = 100cc	
		iii) Cut-off = 10% of the stroke volume	
		v) Speed = 1500 rpm with a possibility of overspending of 2000 r	pm
	b.	vi) Cylinder material = cast iron. Determine:	(10 Marks)
	υ.	i) Cylinder bore	
		ii) Cylinder length	
		iii) Wall thickness	
		iv) Thickness of cylinder head.	(10 Marks)
		Module-3	(10 maiks)
5		Design a Castiorn piston for a single acting four stroke diesel engine from the	e following
		C. L. L.	. Tonowing
		Cylinder bore = 100mm	

= 125mm = 2000 rpm

= 5MPa

= 0.25 kg/Brake power in KW/h

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Length of the stroke

Maximum gas pressure

Fuel consumption

Brake mean effective pressure = 0.5MPa

Assume any further data required for the desi

51

OR

6 Design a connecting rod of circular section for the following data: Diameter of the piston or cylinder bore = 150mm Length of the connecting rod = 350 mmStroke of the piston = 160 mmMass of the reciprocating parts =2.8kg Speed of engine = 1500 rpmMaterial of connecting rod = 40C8 steel (σ_{ys} = 328.6 N/mm²) FOS for buckling Length to diameter ratio of crank pin and gudgeon pin = 1.5 Allowable bearing pressure at the gudgeon pin = 16.5 N/mm^2 Material for the bolt and cap = 50C4 steel (σ_{ys} = 372.7N/mm²) Factor of safety for the bolt and cap Assume any further data required for the design. (20 Marks) Module-4 Explain the following gear boxes: i) Sliding - Mesh gear box ii) Constant - Mesh gear box (10 Marks) b. Sketch a section through a sliding type gear box with four forward and one reverse speeds and explain clearly how the different speed ratios will be obtained in the following cases: Gear ratio of top gear = 1:1Gear ratio of third gear = 1.38 : 1Gear ratio on second gear = 2.24:1Gear ratio on first gear = 3.8:1Gear ratio on reverse gear = 3.8:1 Assume counter shaft or layout shaft speed is half that of the engine speed and smallest gear is not to have less than 15 teeth. (10 Marks) Classify and explain the types of suspension springs. b. Define Resonance, Isolation, Forced Vibration, Time period, Degree of freedom (10 Marks) (05 Marks) Obtain two degree of freedom equation of motion for vehicle suspension. (05 Marks) Module-5 9 Explain briefly: a. Engine coolant flow b. Forced circulation water cooling system c. Radiator d. Purpose of cooling system. (20 Marks) a. Explain the following related to common emission control system: i) Crank case emission control ii) Exhaust emission control. (10 Marks) b. Write the advantages and disadvantages of liquid cooled engine system. (10 Marks)

52

/ 22- IsemM.Tech. M.M.D

CBCS SCHEME

USN

22MMD/MEA21

Second Semester M.Tech. Degree Examination, June/July 2023 Advanced Machine Design

Time: 3 hrs.

Max. Marks: 100

	Module 1	M	L	C
Q.1	Explain with a flow chart of phases and interaction of the design process.	10	L2	CO1
	i) Design factor and Factor of safety ii) Dimensions and Tolerances.	10	L2	CO1
-	OR			
Q.2	What are the professional responsibilities of the Design Engineer's and also list and explain solution process technique of Design Engineer's.	12	L2	CO1
	Explain Standards and Codes. List some of the standards organisation in Mechanical Engineers.	8	L2	CO1
	Module – 2		70	
Q.3	The state of the s	10	L2	CO1
	With an example, explain how 2D static loading analysis carried out in a machine element.	10	L2	CO1
	OR			
Q.4	Define Free Body Diagram and explain its importance in load analysis.	6	L2	COI
	Explain the following: i) Impact loading ii) Beam loading.	14	L2	CO
	Module – 3			L
Q.5		10	L2	CO1
	A biaxial stress element as shown in Fig. Q5(b) has $\sigma_x = 40,000$ psi, $\sigma_y = -20,000$ psi and $\tau_{xy} = 30$ psi CCW. Use Mohr's circles to determine the principal stresses. Check the result with a Analytical method. Fig. Q5(b) and Fig. Q(6(b)	10	L4	CO2
	Ø OR			
Q.6	i) Axial Tension ii) Direct shear stress iii) Bearing stress iv) Tear out.	10	L2	CO
	1 of 2			

		22N	1Ml	D/M]	EA21
	b.	A biaxial stress element as shown in Fig. Q6(b) has $\sigma_x=40{,}000~psi$, $\sigma_y=20{,}000~psi$ and $\tau_{xy}=10000~psi$ CCW. Use Mohr's circle to determine the principal stresses. Check the solution with a Analytical method.	10	L4	CO2
		Module – 4			
Q.7	a.	Explain Stresses acting on Beams, Shafts and Cylinders.	10	L2	COI
			838	19.00.9	
	b.	Determine and plot the slope and deflection functions for the beam shown in Fig. Q7(b). Take beam length $\ell=10$ in and load location $a=4$ in. The beam's $I=0.5$ in ⁴ and $E=30$ MPsi. The magnitude of the applied force is $F=400~\ell b$.	10	L4	CO2
		OR			
Q.8	a.	What are Stress concentration and explain with a neat sketch methods to reduce stress concentration in a machine elements.	10	L2	CO1
	b.	Find the most highly stressed locations on the bracket shown in Fig. Q8(b) and determine the applied and principal stresses at those locations. Take the rod length $\ell=6$ in and the arm $a=8$ in. The rod outside diameter $d=1.5$ in. load $F=1000~\ell b$.	10	L4	CO2
		Module – 5			
Q.9	a.	List theories of failure of Ductile materials. Under static loading and explain in detail any one theory.	10	L2	CO1
	b.	Determine the safety factors for the bracket shown in Fig. Q9(b) based on both the distortion energy theory and the maximum shear theory and compare them. Take the materials as $2024-T4$ aluminum with yield strength of 47000 Psi. The rod length $\ell=6$ in and arm $a=8$ in. The rod outside diameter $d=1.5$ in. load $F=1000~\ell b$.		L4	CO2
	1	OR		Wines	1
Q.10	a.	List theories of failure of Brittle materials under static loading and explain in detail any one theory.	10	L2	CO
	b.	Determine the safety factors for the bracket rod shown in Fig. Q10(b) based on the modified Mohr theory. Take material as class 50 gray cast iron with $\sigma_{ut} = 52500$ Psi and $\sigma_{uc} =$ -164000 Psi. The rod length $\ell = 6$ in and arm a = 8 in. The rod outside diameter d = 1.5 in. load F = 1000 ℓb .		L4	CO2

* * * * *

USN						

22MMD/MEA/MDE22

Second Semester M.Tech. Degree Examination, June/July 2023 Advance Finite Element Methods and Applications

Time: 3 hrs.

Max. Marks: 100

		Module - 1	M	L	C
Q.1	a.	Derive the finite element equations from the principle of virtual work.	12	L1	CO
	b.	For the spring assemblage shown in Fig.Q1(b), find the nodal displacements and support reactions. Given: $K_1 = 200 \text{ N/mm}$; $K_2 = 400 \text{ N/mm}$; $K_3 = 600 \text{ N/mm}$; $K_4 = 200 \text{ N/mm}$; $K_5 = 200 \text{ N/mm}$; $K_6 = 200 \text{ N/mm}$; $K_7 = 200 \text{ N/mm}$; $K_8 = 200 \text{ N/mm}$; $K_9 = 200 \text{ N/mm}$; $K_$	8	L2	COI
		Fig.Q1(b)			
Q.2	a.	For the spring assemblage shown in Fig.Q2(a), find the displacements of the rigid body and the support reactions. Solve the problem symbolically.	10	L2	CO2
		Fig.Q2(a) maidbady			
	b.	Sketch come of the 1D, 2D, 3D and axisymmetric finite elements commonly encountered. Module – 2	10	L1	CO2
Q.3		For the plane truss shown in the Fig.Q3, determine the displacement and reactions. Let $E = 210$ GPa, $A = 6 \times 10^{-4}$ m ² for elements 1 and 2, and $A = 6\sqrt{2} \times 10^{-4}$ m ² for the element 3. (Given load at node 2 is 1000 kN)	20	L3	CO2
Q.4	9	OR Obtain the stiffness matrix for a bar arbitrarily oriented in the plane.	12	12	CO
T .y	b.	How do we compute the stress in a bar element arbitrarily oriented and whose end displacements in global coordinate system are known.	8	L2 L2	CO2
		Module – 3			
Q.5	a.	Using the direct stiffness method, solve the problem of the propped cantilever beam subjected to end load P in Fig.Q5(a). The beam is assumed to have constant EI and length 2L. It is supported by a roller at mid-length and built is at the right and	10	L3	CO

		P 22MMD/	ME	4/M]	DE22
		<u>₩</u> <u>₩</u>			
	b.	Fig.Q5(a) A beam is subjected uniform distributed load W. The beam is of length L	140	1	+
		Using the work-equivalence method, find the equivalent nodal forces and	10	L2	CO3
		moments. Assume the beam to have constant EI throughout its length.	1		
		OR			
Q.6	a.	Determine the displacement and rotation under the force and momen located at the centre of the beam in Fig.Q6(a). The beam is fixed at both ends. A downward force of 10 kN and an applied moment of 20 kN-m ac at the centre of the beam. Let $E = 210$ GPa and $I = 4 \times 10^{-4}$ m ⁴ throughout the beam.	1	L3	CO3
		Fig O6(a) 20 kN·m			
	b.	Fig.Q6(a) Determine the nodal displacement and rotations for the beam shown in Fig.Q6(b). The beam is fixed at left end, has a roller support at the middle	10	L3	CO3
		and a spring support at the right end. A downward force of $P = 50$ kN acts at the right end. Let $E = 210$ GPa, $I = 2 \times 10^{-4}$ m ² and $K = 200$ kN/m.			
		P= 50KN			
		Fig.Q6(b)			
		Module – 4			
Q.7	a.	Obtain the finite element equations (stiffness matrix) for a plane stress element (CST) in global coordinate system.	16	L2	CO1
	b.	List the stress and strains in case of plane stress and plane strain conditions.	4	L2	CO1
		OR	-		COI
Q.8		Find the nodal displacement for the structure shown in the Fig.Q8 which can be idealized as two CST elements. Assume plane stress condition. Take $\gamma = 0.25$, $E = 2 \times 10^5 \text{ N/mm}^2$ and thickness = 15mm.	20	L3	CO3
		Fig.Q8 1—750 mm —			
0.0	_	Module – 5			
Q.9	a.	Obtain the stiffness matrix for a bar element using isoparametric formulation.	10	L2	CO1
	b.	Determine the shape functions for 4-noded rectangular element using natural coordinate system.	10	L2	CO2
0.10		OR			
Q.10		Using Lagrange functions, derive the shape function for hexahedron (brick) element.	10	L2	CO2
	b.	Show that the constant derivative condition and conditions for rigid body are satisfied for isoparametric elements if $\Sigma N_i = 1$.	10	L2	CO1

		1			
USN	-0				

22MMD/MDE/MEA232

Second Semester M.Tech. Degree Examination, June/July 2023 Fracture Mechanics

Time: 3 hrs.

Max. Marks: 100

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		Module – 1	M	L	C
Q.1	a.	What is Fracture Mechanics? Discuss briefly the ductile and brittle fracture.	8	L2	CO1
	b.	Discuss the fracture mechanics approach to structural design.	8	L2	CO1
	c.	With a neat sketch, explain the modes of failure.	4	L2	COI
		OR			
Q.2	a.	With a neat diagram, explain the working principle of Magnetic particle inspection.	6	L2	CO1
	b.	Illustrate crack detection using X-ray imaging.	6	L2	C01
	c.	Explain briefly with a neat diagram the liquid penetration inspection.	8	L2	CO1
		Module – 2			
Q.3	a.	Derive an expression for fracture strength of a brittle material using Griffith's energy balance.	10	L3	CO2
	b.	Determine the energy release rate of a Double Cantilever Beam (DCB) specimen subjected to a constant load.	10	L3	CO2
		OR			
Q.4	a.	Determine the stress distribution on the surface of a thin plate with a center crack. Draw the Mohr's circle diagram.	10	L3	CO2
	b.	Briefly explain the critical energy release rate in a plate with center crack and subjected to plane stress.	10	L3	CO2
	/ ⁴ / ₂	Modulé – 3			
Q.5	a.	Explain: i) LEFM ii) EPFM.	6	L2	CO3
	b.	Deduce the stress and displacement expressions for an isotropic flat plate with a crack length of "2a".	6	L3	CO3
	c.	Write a note on: i) Equilibrium equations and ii) Compatibility relations between strain components.	8	L3	CO3

		22MMD/N	MDI	E/MI	EA23
		OR			
Q.6	a.	a cracked surface i) Symmetrically ii) Asymmetrically.		L3	CO
	b.	Discuss the importance of stress intensity factor. What are the factors on which it depends?	10	L3	CO
		Module – 4			
Q.7	a.	Derive an expression for Irwin's plastic zone correction.	10	Т 2	60
	h	A V	10	L3	CO
	b.	Briefly explain the effect of plate thickness on stress intensity factor variation.	10	L3	CO
		OR			
Q.8	a.	Determine the J-integral for a Double Cantilever Beam (DCB) specimen, if each cantilever is pulled by a distributed load P, as shown in Fig.Q.8(a).	10	L3	CO ₄
	b.	Discuss the numerical evaluation of J-integral and predicting safety or failure.	10	L3	CO4
20		Module – 5			
2.9	a.	Derive relationship between CTOD, K _I and G _I for small scale yielding.	10	L3	CO5
	b.	Establish a relation between CTOD and J.	10	L3	CO5
		OR			
.10	a.	Explain the load displacement to the	10	L3	CO5
	b.	Discuss the graphical interpretation method of J _{IC} .	10	L3	CO5
		2 of 2			

USN				

22MMD/MEA/MDE241

Second Semester M.Tech. Degree Examination, June/July 2023 Mechatronics System Design

Time: 3 hrs.

Max. Marks: 100

1111		Module – 1	M	L	C
Q.1	a.	What is Mechatronics? Explain with block diagram basic elements of mechatronics system.	10	L2	CO1
	b.	Explain with block diagram, open loop systems and closed loop systems.	10	L2	CO1
	595.50	OR		-	
Q.2	a.	Briefly explain Smart Sensors and Potentiometer sensors.	10	L2	CO1
Q.2	b.	Explain with sketch Hydraulic actuation systems.	10	L2	CO1
	120/01551	Module – 2			
Q.3	a.	Explain with sketch mechanical switches and solid state switches.	10	L2	CO2
V	b.	Explain with sketch Solenoids and Stepper motors.	10	L2	CO ₂
		OR			
Q.4	a.	What is Engineering systems models? Explain with sketch rotational translational systems.	10	L2	CO2
	b.	Explain with sketch Electro mechanical systems.	10	L2	CO2
		Module – 3			
Q.5	a.	What is signal conditioning? Explain with sketch the operational amplifier.	10	L2	CO3
V. 0	b.	Explain with sketch protection and filtering in signal conditioning.	10	L2	CO3
		OR			
Q.6	a.	Explain with sketch Wheatstone Bridge and Multiplexers.	10	L2	CO3
2.0	b.	What is MEMS? Explain materials for MEMS and micro systems.	10	L2	CO3
		Module – 4			
Q.7	a.	What is modeling dynamic systems? Briefly explain with sketch natural and forced responses.	10	L2	CO4
	b.	Explain with sketch Transient and Steady-state responses.	10	L2	CO4
		OR			
Q.8	a.	Explain with examples for First order systems and Transfer functions for First Order Systems.	10	L2	CO4
	b.	Explain with examples for systems in series connections.	10	L2	CO4
-		Module – 5			
Q.9	a.	Explain with block diagram micro processor system and its buses.	10	L2	CO5
- Vi	b.	Explain with block diagram general architecture of a microprocessor.	10	L2	CO5
-		OR			
Q.10	a.	Explain with suitable diagram of micro controllers.	10	L2	CO5
	b.	Briefly explain Assembly Languages of instructions set of Data transfer movement.	10	L2	CO5

122-IIsem. M.Tech. CS CBCS SCHEM

		22SCS21
USN		2250022

Second Semester M.Tech. Degree Examination, June/July 2023 Big Data Analytics

Time: 3 hrs.

				_	
		Module – 1	M	L	COL
Q.1	a.	Explain MapReduce data flow with multiple tasks with a diagram.	10	L1	CO1
	b.	Driefly explain the following HDFS concepts:	10	L1	CO1
		(i) Blocks (ii) Name Node and Data Nodes (iii) HDFS High Availability			
		OR	40		001
Q.2	a.	Explain the Hadoop File system and Basic File system operations	10	L1	CO1
2		commands.		T 4	CO1
	b.	How a client writing data to HDFS with a diagram.	10	L1	CO1
	~	Module – 2			
Q.3	a.	Explain Anatomy of a YARN Application Run with a neat diagram.	10	L1	CO ₂
	b.	Explain scheduling in YARN with a neat diagram.	10	L1	CO ₂
	υ.	OR "			
Q.4	a.	Explain Data Integrity and Compression in HDFS.	10	L1	CO ₂
Q. 4	b.	With a neat diagram, explain sequence file format with record compression	10	L1	CO ₂
	υ.	and block compression.			
		Module - 3			
0.5	•	Explain (i) Types of Hadoop Logs	10	L2	CO3
Q.5	a.	(ii) Tuning a Job checklist			
	h	Briefly discuss about Apache Oozie and program for Oozie work flow	10	L2	CO3
	b.	definition to run the maximum temperature MapReduce Job.			2
	_	OR			
0.6		Explain the Anatomy of a MapReduce Job RUN with a neat diagram.	10	L2	CO3
Q.6	a.	How status updates are propagated through the MapReduce system with a	10	L2	CO
	b.				
		neat diagram. Module – 4			
		Explain the Input Format class hierarchy with a neat diagram.	10	L3	CO
Q.7	a.	Explain the Input Format class hierarchy with a neat diagram. Explain the Output Format class hierarchy with a neat diagram.	10	L3	CO
	b.	Explain the Output Format class meratery with a near diagram.			
		OR			
		With a neat diagram, explain how FLUME Agent with a spooling directory	10	L3	CO
Q.8	a.	With a neat diagram, explain now PLOWE Agent with a spooling directory	-		
		source and a logger sink connected by a file channel. Describe how Load balancing between two Agents in FLUME with a	10	L3	CO
	b.		1		
	_	diagram. Module – 5		Date Co.	
	_	Wiodule - 5	10	L3	CO
Q.9	a.		10		
		ways of executing PIG program.	10	L3	CO
	b.		10	100	
		OR Liberith a diagram	10	L3	CO
Q.10	a.	Discuss about SPARK. How SPARK Runs a Job with a diagram.	10		_
	b.	Explain SPARK on YARN client mode with a diagram.	10	LIS	- 00
		487			

SN			
311			
DI,	1 1	40 4	

22SCS/SCN22

Second Semester M.Tech. Degree Examination, June/July 2023 Artificial Intelligence and Machine Learning

Time: 3 hrs.

Max. Marks: 100

Q.1	a.	What is A12 Freshing 1 C 15	M	L	C
Q.1		some applications of AI.		L2	
	b.	the other with 3 gallons of capacity. Neither have any measuring marks on it. How can we get exactly 4 gallons of water in 5 gallon jug? i) Write down the production rules for the above problem. ii) Find any one solution for the above problem.	10	L2	CO
0.1		OR			
Q.2	a.	Write Breadth first search algorithm and explain by taking suitable example.	10	L2	CO1
L,	b.	Explain the process of simple hill climbing with algorithm and also explain the problems with hill climbing.	10	L2	CO1
0.2	Т	Module – 2			
Q.3	a.	Explain MINIMAX procedure, strategy and algorithm.	12	L2	CO1
	b.	Show that $\alpha: (A \wedge B) \ A(B \rightarrow \sim A)$ is unsatisfiable using the tableau method.	8	L2	CO1
		OR			
Q.4	a.	Write down the steps to transform a formula to it.	10	L2, L3	CO1
	b.	Explain the game playing problem with			
		WAX is playing first.	10	L2, L3	CO2
) =		Module – 3			
2.5	a.	What is Means Ends analysis? Write the algorithm	10	L2	CO2
	b.	Explain semantic net method of knowledge representation with an example.	10	L2	CO2

			22	SCS	/SCN2
Q.6	T	Discuss about knowledge are			
2.0	. 1.	about knowledge representation with c.	1	0 x	2 0
	- 1	and faults in a frame.	9 1	0 1	.3 CO
	٠.				
	ŀ	TOTAL			
		mechanism for the following set of classes:	1	0 L	3 CO
		isa $(X, human \leftarrow is a (X, man))$			
	1	isa (John, man).			
		(*****, mair).	1		
Q.7	a	Fynlain the Module -4			
C .,	a	The concept of Daves meorem and domine D	10	A T.	0 00
		conditional probability.	110		2 CO
	+-				
	b		-		
		0.40 and probability of any person chosen at random bring literate as as 0.005. Find the probability of the fact that	10	L2	CO
		as 0.005. Find the probability of the fact that			
		as 0.005. Find the probability of the fact that a person chosen at random of age > 60 years is literate.			
		5 45 years is merate.			
	7				
Q.8	a.	Diagram 1 OR			
V.0	a.	Discuss about K Means and hierarchical clustering techniques in brief.	10	7	T ===
	1	E	10	L2	CO2
	b.	Explain the components of a learning system with a neat sketch.			
		o jotom with a fleat skelen.	10	L2	CO2
	,	Module – 5			
Q.9	a.	What is SVM? Outline the working of SVM (Support Vector Machine) for linear and non linear classification			
		linear and non linear classification. (Support Vector Machine) for	10	L2	CO3
		and non inical classification.			003
	b.	Discuss the discount in			
	377.75.0	Discuss the different issues while designing an ANN (Artificial Neural Network).	10	L3	CO3
		rectwork).	10	LS	CO3
0.10	0	What is a Name of the Control of the			
2.10	a.	What is an ANN? Explain a neuron model with relevant expressions.	10	-	
			10	L2	CO3
	h	Design a percentron for Poolege - C			
	b.	perception for Boolean of function using learning also it			
	υ.	Design a perceptron for Boolean or function using learning algorithm. Assume $W_1 = -0.2$, $W_2 = 0.4$ and Learning rate $A = 0.2$	10	L2	CO3
	U.	Assume $W_1 = -0.2$, $W_2 = 0.4$ and Learning rate $A = 0.2$.	10	L2	CO3
	U.	Assume $W_1 = -0.2$, $W_2 = 0.4$ and Learning rate $A = 0.2$.	10	L2	CO3
	0.	$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
	0.	Assume $W_1 = -0.2$, $W_2 = 0.4$ and Learning rate $A = 0.2$.	10	L2	CO3
	Q. (2)	$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
4		$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
4		$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
A		$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
A		$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
A		$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
4		$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
A	87	$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
A		$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
A		$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
4	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
4		$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
4	27	$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
4	27	$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
4	A. (2)	$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3
A		* * * * * *	10	L2	CO3
4		$0.2, W_2 = 0.4 \text{ and Learning rate A} = 0.2$	10	L2	CO3

62

USN				22SCS2	31
	1		70000		

Second Semester M.Tech. Degree Examination, June/July 2023 Wireless Networks and Mobile Computing

Time: 3 hrs.

Max. Marks: 100

		Module – 1	M	L	C
Q.1	a.	What are the various tiers in three tier architecture? Describe the functions of each tier in detail.	12	L2	CO1
	b.	Explain how can an ISP implement a system using ICAP where some web sites are inaccessible during certain times of the day.	8	L2	CO1
		OR			
Q.2	a.	How is content rating and filtering helpful in classifying content? What is the role of RSACI and PICS in classifying content?	8	L2	C01
	b.	What is a content aware system? What all can be the types of information needed for developing a fully content aware system?	8	L2	CO1
6	c.	Write a short note on client content manager.	4	L2	C01
		Module – 2			
Q.3	a.	Describe the IS-95 architecture in detail.	12	L2	CO1
	b.	Differentiate between GSM and 3G.	8	L2	CO2
		OR			
Q.4	a.	Differentiate between Hard handoff, soft handoff and softer handoff.	5	L2	CO2
	b.	What is direct sequence spread spectrum technology? How does it work in CDMA technology?	10	L2	CO2
	c.	Explain the design constraints in applications for handheld devices.	5	L2	CO2
		Module – 3			
Q.5	a.	Explain the smart client architecture with a neat diagram.	12	L2	CO1
	b.	Explain the palm OS architecture in detail.	8	L2	CO1
	_	OR			
	2.15	A MA / OR			
Q.6	a.	Explain the smart client application development process in detail.	12	L2	CO2

					1
			2	22SC	CS231
		Module – 4			
Q.7	a.	Explain thin client architecture with a neat diagram.	12	L2	CO1
	b.	Explain the process of processing a wireless request in detail.	8	L2	CO1
		OR			
Q.8	a.	Explain the Wireless Application Protocol (WAP) stack both 1.x and 2.x and also WAP benefits.	12	L2	CO1
	b.	Write an HDML code for inventory search which includes three go links as search by Name, Search by SKV and Inventory list.	8	L2	CO2
		Module – 5		-	
Q.9	a.	What is J2ME MIDP? Explain its various functional components.	4	L2	CO3
	b.	What is CLDC? How do you program for CLDC?	8	L2	CO3
	c.	What are the different security considerations in MIDP? Explain in detail.	8	L2	CO3
		OR			
Q.10	a.	Explain MIDlet life cycle in detail.	8	L2	CO3

* * * * *

Discuss in detail about GUI in MIDP.

12

L2

CO₃

HCN					
USIN					

22SCS/SAM/SAD244

Second Semester M.Tech. Degree Examination, June/July 2023 Agile Technologies

Time: 3 hrs.

Max. Marks: 100

		Module - 1	M	L	C
Q.1	a.	Explain different types of success with a neat diagram.	10	L2	CO2
2.1	b.	How agile development helps to achieve organizational success?	10	L1	CO2
		OR		li de	
Q.2	a.	What does it mean to "be agile"?	05	L1	CO2
Z	b.	What are Agile methods?	05	L1	CO2
	c.	List the principles behind the agile manifesto.	10	L1	CO2
		Module – 2			
Q.3	a.	Explain XP lifecycle and briefly explain how it works.	10	L2	CO1
	b.	Discuss the functions of on-site customers and product managers in XP team.	10	L2	CO1
		OR			
Q.4	a.	Discuss the recommendation for adopting XP.	10	L2	CO1
V	b.	Discuss the function of management support, team management and collocated team.	10	L2	CO2
		Module – 3			
0.5		What is root-cause analysis? How do you find root cause? When to fix and	10	L1	CO2
Q.5	a.	not to fix root cause?	10		002
	b.	What is iteration demo? How to conduct iteration demo?	10	L1	CO2
	D.	OR			
Q.6	a.	What are the technique XP uses to achieve zero bugs? Explain in detail.	10	L1	CO1
4.0	b.	What is meant by documentation? Explain different types of	10	L1	CO1
	-	documentation.			
		Module – 4	0		
Q.7	a.	Define "values", "principles" and "practices" in XP.	10	L1	CO1
	b.	When do you think it's time to break the rules?	05	L1	CO1
	c.	Anything more is wasteful. Eliminate it! How do you do it?	05	L1	CO3
		OR			
Q.8	a.	Discuss how we build effective relationship with people.	10	L2	CO3
	b.	How to build process for the people? Explain.	10	L1	CO3
		Module – 5			
Q.9	a.	Only releasable code has value. Justify.	10	L2	CO3
	b.	Discuss the Universal Design Principles.	10	L2	CO3
		OR			
Q.10	a.	Explain how do you state great designs.	10	L2	CO3
	b.	Software doesn't exist. Justify.	05	L2	CO3
	c.	Design is for understanding. Justify.	05	L2	CO1

USN					
	1		100	C	

22LDC/LDN/LDE12

First Semester M.Tech. Degree Examination, June/July 2023 Advanced Digital Signal Processing

Time: 3 hrs.

Max. Marks: 100

		Module - 1	M	L	C
Q.1	a.	With neat block diagram, explain representation of discrete time system and also mention the classification of discrete time system.	10	L2	CO1
	b.	Explain recursive and non recursive Realizations of FIR systems.	10	L2	CO1
		OR			
Q.2	a.	Explain implementation of sampling rate conversion.	10	L2	CO1
	b.	Explain correlation of discrete time systems.	10	L2	CO1
		Module −2			
Q.3	a.	Explain design of a Linear phase FIR Filters by the frequency sampling method.	10	L2	CO2
	b.	Discuss the two nobel identities used for inter changing of filters.	10	L3	CO2
		OR			
Q.4	a.	Explain the two channel QMF. Suppose the poly phase matrix the three channel perfect reconstruction FIR QMF bank is $P(z^3) = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 1 \end{bmatrix}$. Determine the analysis and synthesis filters in QMF bank.	10	L3	CO2
, 1	b.	How the subband coding is useful for sampling rate conversion? Explain the suband coding of speech signals.	10	L2	CO2
0.5		Module – 3			
Q.5	a.4	i) Stationary random process ii) Statistical Averages for joint random processes iii) Power density spectrum iv) Mean Ergodic process.	10	L2	CO3
	b.	Explain the properties of linear prediction error filters.	10	L2	CO3
		OR			
Q.6	a.	Derive an expression for the prediction of coefficient using Levin's and Durbin algorithm.	10	L3	CO3
	b.	Derive the expression for forward linear filter.	10	L3	CO3

22LDC/LDN/LDE12

		Module – 4		_	
Q.7	a.	Explain the principles of adaptive channel equalization with a neat block diagram.	10	L2	CO4
	b.	Explain adaptive noise cancellation with an example.	10	L2	CO4
		OR			
Q.8	a.	Explain Least Mean Square (LMS) algorithm with necessary steps.	10	L2	CO4
	b.	Explain the properties of the direct form RLS algorithm.	10	L2	CO4
		Module – 5			
Q.9	a.	How the non parametric methods used for power spectrum estimation. Explain Welch method for Averaging modified peridograms.	10	L2	CO5
	b.	Explain Bartlet method for computing the average periodogram	10	L2	CO5
		OR			
Q.10	a.	Explain the Burg's method for computing the AR model parameters.	10	L2	CO5
	b.	Explain the ARMA model for power spectrum estimation.	10	L2	CO5

122. IIs em, M Tech, EE

CBCS SCHEME

|--|

22LDN21

Second Semester M.Tech Degree Examination, June/July 2023 Advanced Communication Systems

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		2. M: Marks, L: Bloom's level, C: Course outcomes.			
		Module – 1	M	L	C
Q.1	a.	Explain the representation of digitally modulated signals.	10	L2	CO1
	b.	With a neat diagram and expressions, explain MQAM.	10	L2	CO1
		OR			,
Q.2	a.	With a neat diagram and expressions, explain offset QPSK (OQPSK).	10	L2	CO1
	b.	Explain power spectral density of digitally modulated signals with finite memory.	10	L2	CO1
	***************************************	Module – 2			
Q.3	a.	With a neat diagram and expressions, explain the matched filter receiver. Also explain the frequency domain interpretation of the matched filter.	10	L3	CO2
	b.	Explain optimal detection for a general vector channel.	10	L3	CO ₂
	110	OR			
Q.4	a.	Explain the optimal detection and error probability for PSK signaling.	10	L3	CO2
	b.	Briefly explain the comparison of digital signaling methods in terms of bandwidth and dimensionality.	10	L3	CO2
Lines.		Module – 3			and the state of
Q.5	a.	Explain the design of band limited signals for no intersymbol interference. The Nyquist criterion.	10	L4	CO3
	b.	Explain the performance characteristics of the MSE equalizer.	10	L4	CO3
		OR			
Q.6	a.	With a neat block diagram, explain adaptive linear equalizer.	10	L4	CO3
	b.	With a neat diagram, explain decision feedback equalization.	10	L4	CO3
		Module – 4			
Q.7	a.	Discuss the differences between shadowing and path loss in wireless communication. How do these phenomena affect signal quality and what are the typical models used to describe them.	10	L2	CO4
	b.	Explain the differences between delay spread and Doppler spread in wireless communication channels. How do these parameters influence the design of communication systems and what techniques are used to mitigate their effects?	10	L2	CO4
		OR			
Q.8	a.	Discuss the performance characteristics of Maximum Likelihood (ML) estimators in statistical modeling.	10	L2	CO4
	b.	Explain the significance of symbol timing recovery in digital communication systems.	10	L2	CO4
		Module – 5			
Q.9	a.	Explain the generation and demodulation of direct sequence spread spectrum signals with necessary equation and block diagram.	10	L4	CO5
	b.	With a neat block diagram, explain the frequency hopped spread spectrum.	10	L4	CO5
	-	OR			Nation 1995
Q.10	a.	With a neat block diagram, explain the CDMA system based on IS – 95.	10	L4	CO5
	b.	Explain the process of generating a Pseudo-Random Noise (PN) sequence	10	L4	CO5

using liner feedback shift register (LFSR) and also properties of maximum.

USN							22LDN/LDS/LEC2
				1	- CHICAGO		20 V

Second Semester M.Tech. Degree Examination, June/July 2023 Antenna Theory and Design

Time: 3 hrs.

Max. Marks: 100

		Module – 1	M	L	C_
Q.1	a.	Derive solution of Maxwell's equation for Radiation problems.	8	L2	CO1
	b.	What is an ideal dipole? Derive an expression for electric and magnetic fields of ideal dipole.	8	L2	CO1
	c.	Write directivity of an ideal dipole and directivity of an sector omnidirectional pattern.	4	L1	CO1
		OR			
Q.2	a.	Explain Slip's in the evaluation of Radiation fields.	6	L2	CO1
	b.	Explain Radiation from line current.	8	L2	CO1
	c.	Explain the basic principle of Radiation Mechanism with a suitable example.	6	L2	CO1
	6.5	Module – 2			-2-300
Q.3	a.	What is Antenna Synthesis? Explain Antenna Synthesis principles.	10	L2	CO2
	b.	Explain the Taylor Line - Source Method.	10	L2	CO2
		OR			
Q.4	a.	Explain Array Pattern Evaluation Including Mutual Coupling.	6	L2	CO2
	b.	Explain the Wood Ward - Lawson Sampling Method.	6	L2	CO2
	c.	Explain with Relevant equation of the array factor expression of uniformly excited.	8	L2	CO2
		Module – 3			
Q.5	a.	Explain with figure of Helical Antenna.	10	L2	CO3
	b.	What is a Yagi – uda Antenna? Explain with neat sketches of Yagi - uda Antenna.	10	L2	CO3
	-	OR			
Q.6	a.	Explain with neat sketches of Microstrip Patch antenna.	10	L2	CO3
10	b.	Explain Infinite Biconical Antenna and Finite Biconical Antenna.	10	L2	CO3
	1	1 of 2			

22LDN/LDS/LEC22

0 =	100	Module – 4			
Q.7	a.	What is Reflector Antennas? Explain Parabolic Reflector Antenna.	10	L2	CO4
	b.	Explain the dual Reflector Antennas with figures.	10	L2	CO4
		OR			
Q.8	a.	Explain Relevant equation general feed model.	6	L2	CO4
	b.	Explain Gain calculations for Reflector Antenna.	8	L2	CO4
	c.	Explain effect Parabolic Reflector.	6	L2	CO4
		Module – 5			
Q.9	a.	Explain two alternative approaches to the MOM.	10	L2	CO5
	b.	Explain Weighted Residuals and the method of moments.	10	L2	CO5
		OR			
Q.10	a.	Derive Kirchoff's Network equation form integral equation.	10	L3	CO5
	b.	Derive Pocklington's integral equation in the MOM.	10	L3	CO5

		TTT	22
USN			
UBIN			A 1982

22LDE/LDN/LCS231

Second Semester M.Tech. Degree Examination, June/July 2023 Wireless Sensor Networks

Time: 3 hrs.

Max. Marks: 100

0.0		Module 1	M	L	_C
			10	L2	CO1
).1	a.	Explain WSN architecture and protocol stack.	10	L2	CO1
	b.	Explain military and home application in WSN. OR			
		Explain Wireless HART architecture and its components with neat	10	L2	CO1
2.2	a.	Explain Wireless HAR1 architecture and its compensation			
-		diagram.	10	L2	CO ₁
	b.	Explain IEEE 802.15.4 and Zigbee protocol stack with neat diagram.			
		Module – 2	10	L2	CO ₂
Q.3	a.	Explain general hardware of sensor node with neat diagram.	10	L2	CO ₂
	b.	Explain the concept of fault tolerance and WSN topology.			
		OR del and architecture	10	L2	CO ₂
Q.4	a.	Explain joint source-channel coding and correlation model and architecture.	10	L2	CO2
	b.	Explain IEEE 802.15.4 Topology structure:	10		002
		(i) Star (ii) Mesh (iii) Cluster tree			
	2022	Module – 3	10	L2	CO3
Q.5	a.	Explain challenges of MAC with respective to energy consumption.	10	L2	CO3
V.c	b.	Explain S-MAC contention based medium access with neat diagram.	10	LL	
	10.	OR	10	L2	CO3
Q.6	a.	Explain the mechanism of CSMA.	10	L2	CO3
Q.u	b.	the color of the color of the color with near may rail.	10	LZ	COS
	В.	Module – 4	140	TTO	T C O 4
0.7	a.	Explain the various challenges for transport layer in WSN.	10	L2	CO4
Q.7	b.	d 1: (lata accompaction) techniques	10	L2	CO4
	D.	OR			T
0.0		Explain Central, distributed and hierarchical network management types	10	L2	CO4
Q.8	a.	with neat diagram.			
	+	B	10	L2	CO
	b	Module – 5			
		direct sequence spread spectrum techniques.	10		
Q.9		The state of the s	10) L2	CO
	b	OR			
		of PN sequence with example and verify its	s 10) L2	CO
Q.1	0 a	Explain the generation of The sequence with states			
		properties. Define spread spectrum with neat diagram. Explain model of SS technique.	. 10	0 L2	CO
	l	Define spread spectrum with neat diagram. Explain model of 50 to 1			21

USN											22LDN241
-----	--	--	--	--	--	--	--	--	--	--	----------

Second Semester M.Tech. Degree Examination, June/July 2023 Multimedia Over Communication Links

Time: 3 hrs. Max. Marks: 100

		Module - 1	M	L	С
Q.1	a.	Describe briefly about the telephone network and network.	10	L1	CO3
	b.	Describe the interactive applications over internet.	10	L1	CO3
	-	OR			
Q.2	a.	Describe the interpersonal communication multimedia applications.	10	L1	CO3
	b.	Describe briefly about the broadcast television and ISDN network.	10	L2	CO3
	-	Module – 2			
Q.3	a.	Describe various types of texts with example for each.	10	L1	CO2
	b.	Define aspect ratio, compute the memory requirement to store single digital image for the vertical resolution 480 pixels and with i) 8 – bit/pixel ii) 24 – bit/pixel. Use aspect ratio 4:3	10	L4	CO2
		OR			
Q.4	a.	Describe the main features of DMS.	10	L1	CO2
	b.	Describe the functions of multimedia operating systems.	10	L3	CO2
		Module – 3			
Q.5	a.	Describe the architecture of general perceptual audio coding.	10	L1	CO2
1	b.	Describe about the psychoacoustic fundamentals with principles of critical band frequency analysis and temporary making.	10	L2	CO2
		OR	`		
Q.6	a.	Describe about the optimum coding in the frequency domain.	10	L1	CO2
	b.	Describe about the audio suband coders.	10	L2	CO2
	-	Module – 4			
Q.7	a.	Describe the block diagram of ISO/IEC decoder and audio encoder.	10	L2	CO3

	b	The Mil LO - 2 systems hierarchy, b. 1			6 1E				
		streams, and MPEG – 2 transport packet headers.	10	L3	CO				
Q.8	a.	Describe the comparison by		1					
		Describe the comparison between MPEG – 1 and MPEG and MPEG – 2 coding parameters.	10	L2	CO.				
	b.	Describe MPEG – 4 version 1 six parts.							
		Secret Wil EO – 4 version I six parts.	10	L3	COS				
		CMCCL							
Q.9	a.	Describe the concept of packet voice and all its							
		Describe the concept of packet voice and also describe NTI reconstruction scheme.	10	L2	CO4				
	b.	Describe the concept of bit rate control with diagram. Also describe various rate control techniques							
		various rate control techniques.	10	L3	CO4				
		OR							
Q.10	a.	a. Describe the concept of multiplexing in ATM							
		frame based and cell based interleaving multiplexing.	10	L2	CO4				
	b.	Draw the Video – streaming architecture across the internet and describe							
		the function of server and client.	10	L3	CO4				

2 of 2