BLOW-UP SYLLABUS

ENGINEERING CHEMISTRY (18CHE12/22)

(Common to all Branches)
(Effective from the academic year 2018-19)

MODULE- I: Electrochemistry and Energy storage systems

Use of free energy in chemical equilibria: Thermodynamic functions: Definitions of free energy and entropy. Cell potential, derivation of Nernst equation for single electrode potential, numerical problems on E, E^0 , and E_{cell} (3 hrs)

Electrochemical energy systems: Reference electrodes: Introduction, construction, working and applications of Calomel electrode. Ionselective electrode – Definition, construction and principle of Glass electrode and determination of pH using glass electrode. Electrolyte concentration cells, numerical problems (3 hrs)

Energy storage systems: Introduction, classification - primary, secondary and reserve batteries. Construction, working and applications of Ni-MH and Li-ion batteries (2 hrs)

(RBT Levels: L3)

Details of the Module-I

Sl.No	Details	Duration	Remarks
1.1	Use of free energy in chemical equilibria: Thermodynamic functions: Introduction, I Law of Thermodynamics,	1 hr	
	Definitions of energy & free energy. II Law of Thermodynamics, definition of entropy. Cell potential: Meaning		
	of EMF		
1.2	Derivation of Nernst equation for single electrode potential and numerical problems	1hr	Numerical
			problems
1.3	Nernst equation for a cell, Numerical problems on E, E^0 , and E_{cell} .	1 hr	Numerical
			problems
1.4	Electrochemical energy systems: Introduction, types of electrodes, Meaning of reference electrodes,	1 hr	
	construction, working, advantages and applications of Calomel electrode.		
1.5	Ion-selective electrode - Definition, examples, membrane electrodes, construction and principle of Glass	1 hr	
	electrode,		
1.6	Determination of pH using glass electrode, Concentration cells: Definition, examples, derivation of an equation	1 hr	Numerical
	to find the EMF of concentration cells, Numerical problems on concentration cells		problems
1.7	Energy storage systems : Introduction, classification - primary, secondary and reserve batteries with examples	1 hr	
1.8	Construction, working and applications of Ni-MH and Li-ion batteries	1 hr	
1.9	Tutorial classes: Involvement of faculty and students in identifying the engineering applications, doubts and	2 hrs	
	clarifications about the module.		

MODULE-II: Corrosion and Metal Finishing

Corrosion: Introduction, Electrochemical theory of corrosion, Factors affecting the rate of corrosion: ratio of anodic to cathodic areas, nature of corrosion product, nature of medium – pH, conductivity and temperature. Types of corrosion - Differential metal and differential aeration - pitting and water line). Corrosion control: Anodizing – Anodizing of aluminium, Cathodic protection - sacrificial anode and impressed current methods, Metal coatings – Galvanization (4 hrs)

Metal finishing: Introduction, Technological importance. Electroplating: Introduction, principles governing electroplating-Polarization, decomposition potential and overvoltage. Electroplating of chromium (hard and decorative). Electroless plating: Introduction, electroless plating of nickel & copper, distinction between electroplating and electroless plating processes (4 hrs)

(RBT Levels: L1 & L2)

Details of the Module-II

Sl.No	Details	Duration	Remarks
2.1	Corrosion: Definition, Wet & Dry corrosion, Electrochemical theory taking corrosion of iron as an	1 hr	
	example		
2.2	Factors affecting the rate of corrosion: ratio of anodic to cathodic areas, nature of corrosion product,	1 hr	
	nature of medium - pH (greater than 10, between 3 and 10, lower than 3), conductivity and		
	temperature		
2.3	Types of corrosion- Differential metal corrosion and differential aeration corrosion: Pitting and water	1 hr	
	line corrosion with diagrams, Corrosion control: Anodizing – Anodizing of aluminium		
2.4	Cathodic protection: Definition, sacrificial anode and impressed current methods, Metal coatings -	1 hr	
	Galvanization		
2.5	Definition and technological importance of metal finishing, Principles governing metal finishing-	1hr	
	Polarization, decomposition potential and overvoltage		
2.6	Electroplating: Introduction, Electroplating of chromium (hard and decorative), its applications	1 hr	
2.7	Electroless plating: Introduction, electroless plating of nickel	1 hr	
2.8	Electroless plating of copper and its applications, distinction between electroplating and electroless	1 hr	
	plating processes		
2.9	Tutorial classes: Involvement of faculty and students in identifying the engineering applications,	2 hrs	
	doubts and clarifications about the module.		

MODULE-III: Energy Systems

Chemical Fuels: Introduction, classification, definitions of CV, LCV, and HCV, determination of calorific value of solid/liquid fuel using bomb calorimeter, numerical problems. Knocking of petrol engine – Definition, mechanism, ill effects and prevention. Power alcohol, unleaded petrol and biodiesel (4 hrs)

Fuel Cells: Introduction, differences between conventional cell and fuel cell, limitations & advantages. Construction, working & applications of methanol-oxygen fuel cell with H_2SO_4 electrolyte, and solid oxide fuel cell (SOFCs) (2 hrs)

Solar Energy: Photovoltaic cells- introduction, construction and working of a typical PV cell, Preparation of solar grade silicon by Union Carbide Process/Method. Advantages & disadvantages of PV cells (2 hrs)

(RBT Levels: L3)

Details of the Module-III

Sl.No	Details	Duration	Remarks
3.1	Chemical Fuels : Introduction, classification based on occurrence and state of aggregation, definitions of CV, LCV and HCV	1 hr	
3.2	Determination of calorific value of solid/liquid fuel using bomb calorimeter: Principle, diagram, construction, working and calculation	1 hr	
3.3	Numerical problems on calorific values.	1 hr	Numerical problems
3.4	Knocking of petrol engine – Definition, mechanism, ill effects and prevention, Power alcohol, unleaded petrol and biodiesel	1 hr	
3.5	Fuel Cells: Introduction, differences between conventional cell and fuel cell, limitations & advantages.	1 hr	
3.6	Construction, working & applications of methanol-oxygen fuel cell with H ₂ SO ₄ electrolyte, and solid oxide fuel cell (SOFCs).	1 hr	
3.7	Solar Energy: Photovoltaic cells- introduction, construction and working of a typical PV cell	1 hr	
3.8	Preparation of solar grade silicon by Union Carbide Process/Method. Advantages & disadvantages of PV cells	1 hr	
3.9	Tutorial classes : Involvement of faculty and students in identifying the engineering applications, doubts and clarifications about the module.	2 hrs	

MODULE IV: Environmental Pollution and Water Chemistry

Environmental Pollution: Air pollutants: Sources, effects and control of primary air pollutants: Carbon monoxide, Oxides of nitrogen and sulphur, hydrocarbons, Particulate matter, Carbon monoxide, Mercury and Lead. Secondary air pollutant: Ozone, Ozone depletion (3 hrs)

Waste Management: Solid waste, e-waste & biomedical waste: Sources, characteristics & disposal methods (Scientific land filling, composting, recycling and reuse) (1 hr)

Water Chemistry: Introduction, sources and impurities of water; boiler feed water, boiler troubles with disadvantages -scale and sludge formation, boiler corrosion (due to dissolved O₂, CO₂ and MgCl₂). Sources of water pollution, Sewage, Definitions of Biological oxygen demand (BOD) and Chemical Oxygen Demand (COD), determination of COD, numerical problems on COD. Chemical analysis of water: Sulphates (gravimetry) and Fluorides (colorimetry). Sewage treatment: Primary, secondary (activated sludge) and tertiary methods. Softening of water by ion exchange process. Desalination of sea water by reverse osmosis (4 hrs)

(RBT Levels: L3)

Details of the Module-IV

Sl.No	Details	Duration	Remarks
4.1	Environmental Pollution: Introduction, Air pollutants: Sources, effects and control of primary air pollutants:	1 hr	
	Carbon monoxide, Oxides of nitrogen and hydrocarbons,		
4.2	Oxides of sulphur, Particulate matter, Carbon monoxide, Mercury and Lead.	1 hr	
4.3	Secondary air pollutant: Ozone, Ozone depletion	1 hr	
4.4	Waste Management: Solid waste, e-waste, Biomedical waste: Sources, Characteristics & disposal methods	1 hr	
	(Scientific land filling, composting, recycling and reuse)		
4.5	Water Chemistry: Introduction, sources and impurities of water; boiler feed water, boiler troubles with	1 hr	
	disadvantages-scale and sludge formation		
4.6	Boiler corrosion (due to dissolved O ₂ , CO ₂ and MgCl ₂), Sources of water pollution, Sewage, Definitions of	1 hr	
	Biological oxygen demand (BOD) and Chemical Oxygen Demand (COD), Determination of COD		
4.7	Numerical problems on COD. Chemical analysis of water: Sulphates (gravimetry) and Fluorides	1 hr	Numerical
	(colorimetry),		problems
4.8	Sewage treatment: Primary, secondary (activated sludge) and tertiary methods. Softening of water by ion	1 hr	
	exchange process. Desalination of sea water by reverse osmosis.		
4.9	Tutorial classes: Involvement of faculty and students in identifying the engineering applications, doubts and	2 hrs	
	clarifications about the module.		

Module V: Instrumental methods of analysis and Nanomaterials

Instrumental methods of analysis: Theory, Instrumentation and applications of Colorimetry, Flame Photometry, Atomic Absorption Spectroscopy, Potentiometry, Conductometry (Strong acid with a strong base, weak acid with a strong base, mixture of strong acid and a weak acid with a strong base) (4 hrs)

Nanomaterials: Introduction, size dependent properties (Surface area, Electrical, Optical, Catalytic and Thermal properties). Synthesis of nanomaterials: Top down and bottom up approaches, Synthesis by Sol-gel, precipitation and chemical vapour deposition, Nanoscale materials: Fullerenes, Carbon nanotubes and graphenes – properties and applications (4 hrs)

(RBT Levels: L1 & L2)

Details of the Module-V

Sl.No	Details	Duration	Remarks
5.1	Instrumental methods of analysis: Introduction, principle, advantages and limitations	1 hr	
5.2	Instrumentation and applications of Colorimetry (Estimation of copper in brass), Flame	1 hr	
	Photometry(estimation of sodium and potassium)		
5.3	Instrumentation and applications of Atomic Absorption Spectroscopy, Potentiometry (estimation of FAS),	1 hr	
5.4	Instrumentation and applications of Conductometry (Strong acid with a strong base, weak acid with a strong	1 hr	
	base, mixture of strong acid and a weak acid with a strong base)		
5.5	Nanomaterials: Introduction, size dependent properties: Surface area, Electrical, Optical, Catalytic and	1 hr	
	Thermal properties	1 111	
5.6	Synthesis of nanomaterials: Top down and bottom up approaches, Synthesis by bottom up approach: Sol-gel	1 hr	
5.7	Precipitation and chemical vapour deposition methods with advantages	1 hr	
5.8	Nanoscale materials: Fullerenes, Carbon nanotubes and graphenes – properties and applications (synthesis	1 hr	
	not required)		
5.9	Tutorial classes: Involvement of faculty and students in identifying the engineering applications, doubts and	2 hrs	
	clarifications about the module.		

Text Books:-

- 1. P.C. Jain & Monica Jain. "Engineering Chemistry", Dhanpat Rai Publications, New Delhi (2015- Edition).
- 2. S. S. Dara, A textbook of Engineering Chemistry, 10th Edition, S Chand & Co., Ltd., New Delhi, 2014.
- 3. Physical Chemistry, by P. W. Atkins, Oxford Publications (Eighth edition-2006).

Reference Books:-

- 1. O.G. Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth Reprint (2015- Edition).
- 2. R.V. Gadag & A. Nityananda Shetty., "Engineering Chemistry", I K International Publishing House Private Ltd. New Delhi (2015- Edition).
- 3. "Wiley Engineering Chemistry", Wiley India Pvt. Ltd. New Delhi. Second Edition-2013.
- 4. B. Jaiprakash, R. Venugopal, Sivakumaraiah and Pushpa Iyengar, Chemistry for Engineering Students, Subhash Publications, Bengaluru, (2015- Edition).